Proračun čelične konstrukcije skladišne hale

Žuvela, Lidija

Undergraduate thesis / Završni rad

2015

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Split, Faculty of Civil Engineering, Architecture and Geodesy / Sveučilište u Splitu, Fakultet građevinarstva, arhitekture i geodezije

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:123:798537

Rights / Prava: In copyright

Download date / Datum preuzimanja: 2021-01-24

Repository / Repozitorij: FCEAG Repository - Repository of the Faculty of Civil Engineering, Architecture and Geodesy, University of Split
SVEUČILIŠTE U SPLITU
FAKULTET GRAĐEVINARSTVA, ARHITEKTURE I GEODEZIJE

ZAVRŠNI RAD

PRORAČUN ČELIČNE KONSTRUKCIJE SKLADIŠNE HALE

Lidija Žuvela

Split, 2015.
Tema: Proračun čelične konstrukcije skladišne hale

Opis zadataka:
Za zadanu geometriju objekta (vidi prilog zadataku) potrebno je odrediti dimenzije glavnih i sekundarnih nosivih elemenata, kao i elemenata prostorne stabilizacije. Materijal za izradu nosive konstrukcije je S355 (Fe 510). Objekt se nalazi na području Splita.

Voditelj Završnog rada: Prof. dr. sc. Ivica Boko
Proračun čelične konstrukcije skladišne hale

Sažetak:
Na temelju zadanih podataka, potrebno je dimenzionirati glavnu i sekundarnu nosivu konstrukciju kao i spojeve, te dimenzionirati i proračunati temelje za čeličnu halu.

Ključne riječi:
Čelik, nosiva konstrukcija, spojevi, temelj, dimenzioniranje, proračun

Calculation of a steel storage hall

Abstract:
Based on the given data, it is necessary to size the main and secondary load-bearing structure and joints, and also to size and calculate foundation for a steel hall.

Keywords:
Steel, load-bearing structure, joints, foundation, sizing, calculation
1. TEHNIČKI OPIS .. 2

2. ANALIZA OPTEREĆENJA .. 5
 2.1. OPĆI PODACI, GEOMETRIJA ... 5
 2.2. PRORAČUN OPTEREĆENJA ... 7
 2.2.1. Stalno djelovanje – krovná ploha .. 6
 2.2.2. Djelovanje snijega ... 6
 2.2.3. Proračun djelovanja vjetra ... 8
 2.3. SILE U ČVOROVIMA ... 8
 2.3.1. Sile od stalnog opterećenja ... 10
 2.3.2. Sile od opterećenja snijegom .. 10
 2.3.3. Sile od opterećenja vjetrom W1 .. 11
 2.3.4. Sile od opterećenja vjetrom W2 .. 12

3. DIJAGRAMI UNUTARNJIH SILA ZA POJEDINA OPTEREĆENJA ... 13
 3.1. VLASTITA TEŽINA KONSTRUKCIJE ... 13
 3.2. STALNO OPTEREĆENJE – KROVNA PLOHA ... 13
 3.3. OPTEREĆENJE OD SNIJEGA – KROVNA PLOHA ... 14
 3.4. OPTEREĆENJE VJETROM W1 .. 14
 3.5. OPTEREĆENJE VJETROM W2 .. 20
 3.6. NAJKRITIČNIJE KOMBINACIJE DJELOVANJA ... 18
 3.6.1. Kombinacija GSN1 [1,35 x (Δg + G) + 1,5 x S] ... 20
 3.6.2. Kombinacija GSN2 [1,0 + (Δg + G) + 1,5 x W2] ... 22

4. KONTROLA PROGIBA GS ... 24
 4.1. VERTIKALNI PROGIB U SREDINI DONJEG POJASA KROVNE REŠETKE ... 24
 4.2. HORIZONTALNI POMAK VRHA STUPA .. 26

5. DIMENZIONIRANJE KONSTRUKTIVNOG SUSTAVA .. 27
 5.1. DIMENZIONIRANJE REŠETKE KONSTRUKTIVNOG SUSTAVA ... 27
 5.1.1. Pojasevi .. 27
 5.1.2. Vertikale ... 28
5.1.3. Dijagonale ... 29

5.2. DIMENZIONIRANJE STUPOVA KONSTRUKTIVNOG SUSTAVA 31

5.2.1. Prva kombinacija ... 33

5.2.2 Druga kombinacija .. 34

6. PRORAČUN SPOJEVA .. 34

6.1. DIMENZIONIRANJE VLAČNOG NASTAVKA REŠETKE 40

6.1.1. Poprečni presjek ... 40

6.1.2. Maksimalna debijina vara ... 40

6.1.3. Otpornost vara .. 40

6.1.4. Otpornost vijaka: M12, n=4 ... 40

6.1.5. Proračun dimenzija pločice ... 41

6.1.6. Proračun minimalne debljine ploče ... 41

6.2. DIMENZIONIRANJE SPOJA STUP – REŠETKA ... 42

6.2.1. Kontrola varova ... 42

6.2.2. Proračun vijaka ... 43

6.2.3. Proračun dimenzija ploče ... 43

6.3. DIMENZIONIRANJE UPETOG SPOJA STUP – TEMELJ 45

6.3.1. Raspodjela sila po presjeku nosača ... 46

6.3.2. Kontrola varova ... 46

6.3.3. Proračun vijaka ... 47

6.3.4. Proračun ploče ... 48

7. PRORAČUN TEMELJA ... 50

8. NACRTI .. 51
1. TEHNIČKI OPIS

OPIS KONSTRUKCIJE

Općenito

Predmetna građevina nalazi se na području grada Splita. Tlocrtna dimenzije su 17,2 x 34,2 (m), visina iznosi 7,35 (m). Krovna ploha, u odnosu na horizontalnu ravninu, je nagnuta pod kutom α = 4,0°, što je ekvivalentno padu od 7,00%.

Glavni nosivi sustav hale je zamišljen kao sustav 7 ravninskih okvira raspona 17,2(m), stabilnih u svojoj ravnini, na međusobnom osnom razmaku od 5,7 (m).

Na gornje pojaseve se oslanjaju sekundarni krovni nosači (podrožnice) na međusobnom osnom razmaku od 2,15 (m), a na stupove su oslonjeni sekundarni bočni nosači na međusobnom osnom razmaku od 3,10(m).

Stabilizacija hale ostvarena je spregovima u krovnim (horizontalnim) i bočnim (vertikalnim) ravninama i to u krajnjim poljima (prvom i posljednjem).

Kao pokrov koriste se aluminijijski sendvič paneli.
Konstruktivni elementi

Rešetka

Proračunom su odabrani pojasevi šupljeg kvadratnog profila 100x80x5 (mm), te vertikale i dijagonale 60x60x4 (mm). Zbog maksimalne proizvodne dužine od 12,0 (m), donji pojas se sastoji iz dva dijela, jednog dužine 12 000 (mm) i drugog dužine 5 200 (mm), gornji pojas izrađen je iz tri dijela.

Stupovi

Proračunom je odabran profil HEA 240 te je izvršen i dokaz nosivosti. Također, odabrani profil stupa zadovoljava i pomake konstrukcije uslijed djelovanja opterećenja, odnosno pomaci konstrukcije su manji od dopuštenih pomaka.

Sekundarni nosači (podrožnice)

Sekundarni nosači prenose opterećenje sa krovne plohe na primarne nosače (gornji pojas rešetke) za koje su vijcima vezani na simetričnom krovu nagiba 7 %. Ovim programskim zadatkom profili sekundarnih nosača kao ni sekundarna zidna konstrukcija, koja je predviđena, nisu proračunati.

Spregovi

Korišteni su horizontalni (krovni) i vertikalni (bočni) spregovi za prostornu stabilizaciju ovog objekta, koji služe za prijenos horizontalnih sila preko konstrukcije na temelje objekta.

Polja za vertikalno ukrćenje smješteni su u prvom i posljednjem polju konstrukcije, dok horizontalni spregovi se hvataju za svaki čvor u gornjem pojasu rešetke. Profil šipki spregova ovim programskim zadatkom nije proračunat.

Osnovni zadatak spregova je stabilizacija objekta (čelične hale) i to tako da ne bude ugrožena cjelokupna stabilnost objekta.

SPOJEVI

Vlačni nastavak rešetke

Spoj se izvodi pločicama dimenzija 230X210X14 (mm) navarenim na krajeve grede međusobno pričvršćenim vijcima M12 k.v. 10.9.

Stup – rešetka

Spoj donjeg pojasa rešetke sa stupom ostvaruje se pločicama dimenzija 250x270x24 (mm) i vijcima M12 k.v. 10.9.

Stup – temelj

Spoj stupa sa temeljem ostvaruje se pločicama dimenzija 450x280x30 (mm) i vijcima M22 k.v. 10.9.
PRORAČUNU KONSTRUKCIJE

Statičkom analizom obuhvaćena su opterećenja (vlastita težina, stalno, snijeg i vjetar) koja djeluju na konstrukciju.

Pri ovom proračunu, analiza opterećenja je napravljena za jedan okvir raspona 17,2(m), kao reprezentativnog okvira.

Za proračun smo uzeli najnepovoljniju kombinaciju opterećenja, te je prema tome izvršeno dimenzioniranje konstrukcije.

Proračun konstrukcije izvršen je programskim paketom „SCIA 2015“.

MATERIJAL ZA IZRADU KONSTRUKCIJE

Svi elementi konstrukcije izrađeni su od građevinskog čelika S 355.

MONTAŽA I TRANSPORT

Pozicije okvira, kao što je prikazano u radioničkom nacrtu glavnog okvira, izrezat će se u radionici te transportirati na gradilište i zatim montirati (montažni način izgradnje). Pri tome je potrebno obratiti posebnu pozornost na transport i montažu da bi se izbjegla nepotrebna oštećenja.

ANTIKOROZIJSKA ZAŠTITA

Svi dijelovi čelične konstrukcije moraju biti zaštićeni od korozije. Kao vrsta zaštite od korozije koristi se zaštita vrućim pocinčavanjem i zaštitnim premazom. Zaštitni premaz stavlja se u 3 sloja. Prva dva premaza stavljaju se u radionici, dok se treći zaštitni premaz stavlja nakon monaže. Ukupna debljina zaštitnog premaza iznosi 0,3 (mm).

ZAŠTITA OD POŽARA

Svi elementi moraju se zaštiti posebnim premazima otpornim na visoke temperature, s ciljem što veće zaštite od požara. Također je potrebno opremiti objekt za slučaj nastanka požara uređajima za najavu požara kao i opremom za njegovo gašenje.
2. ANALIZA OPTEREĆENJA

2.1. OPĆI PODACI, GEOMETRIJA

GLAVNI NOSAČ: Trokutasti rešetkasti nosač

GRADA I PROPISI:
S 355 – osnovni materijal

Raspon: L = 17,2 m

HRN EN-1991

Nagib krovne plohe: α = 4,0°

HRN EN-1993

Visina nosača: 7,35 m

Pokrov: sendvič paneli

Razmak nosača: e = 5,7 m

Slika 2.1: Ravninski okvir glavne nosive konstrukcije
2.2. PRORAČUN OPterećENJA

2.2.1. Stalno djelovanje – krovna ploha

- pokrov (Sendvič od valovitog aluminijskog lima i izolacije Tervol)
- vlastita težina nosača \(\Sigma = 0,55 \text{ kN/m}^2 \)
- vlastita težina glavnog nosača je uključena u računalnom programu

2.2.2. Djelovanje snijega

\[s = s_k \cdot \mu_i \cdot c_e \cdot c_t [\text{kN/m}^2] \]

\(s_k \) => karakteristična vrijednost opterećenja na tlu u kN/m²

\(s_k = 0,45 \text{ kN/m}^2 \) \(\Rightarrow \) za Split, područje C, do 100 m nadmorske visine

\[\tan \alpha = \frac{60}{860} = 0,07 \Rightarrow \alpha = 4,00^\circ ; \]

- Nagib krova \(\alpha \):

\(\mu_i \) => koeficijent oblika za opterećenje snijegom, očitamo ga ovisno o \(\alpha \),

\(\mu_i = 0,8 \) \(\Rightarrow \) za nagib krova \(0^\circ < \alpha < 15^\circ \)

\[\alpha_1 = \alpha_2 \]

\(c_e = 1,0 \) => koeficijent izloženosti

\(c_t = 1,0 \) => toplinski koeficijent

Opterećenje snijegom preko cijele krovne površine:

\[S_1 = 0,8 \cdot 1,0 \cdot 1,0 \cdot 0,45 = 0,36 [\text{kN/m}^2] \]

Raspodijeljena sila na glavni nosač: \(F_s = 0,36 \text{ kN/m}^2 \cdot 5,70 \text{ m} = 2,05 \text{kN/m} \)
2.2.3. Proračun djelovanja vjetra

\[\mathbf{w}_e = q_{\text{ref}} \cdot \mathbf{c}_e(z_e) \cdot c_{\text{pe}} \quad [\text{kN/m}^2] \] - pritisak vjetra na vanjske površine

\(q_{\text{ref}} \) => referentni pritisak srednje brzine vjetra

\(\mathbf{c}_e(z) \) => koeficijent izloženosti koji uzima u obzir neravnine terena

\(z_e \) => referentna visina

\(c_{\text{pe}} \) => vanjski koeficijent pritiska

Proračun referentnog pritiska vjetra;

\(\mathbf{v}_{\text{ref}} \) => referentna brzina

\(\mathbf{v}_{\text{ref},0} = 30 \text{ m/s} \) <= za Split, područje II, visina objekta 7,35 m

\[\mathbf{V}_{\text{ref}} = \mathbf{c}_{\text{DIR}} \cdot \mathbf{c}_{\text{TEM}} \cdot \mathbf{c}_{\text{ALT}} \cdot \mathbf{V}_{\text{ref},0} \]

\(\mathbf{v}_{\text{ref},0} \) => osnovna poredbena brzina vjetra

\(\mathbf{c}_{\text{DIR}} \) => koeficijent smjera vjetra (obično ga uzimamo 1,0)

\(\mathbf{c}_{\text{TEM}} \) => koeficijent ovisan o godišnjem dobu (uzimamo ga 1,0)

\(\mathbf{c}_{\text{ALT}} \) => koeficijent nadmorske visine; \(\mathbf{c}_{\text{ALT}} = 1 + 0,001 \cdot a_s \cdot a_s = \text{n.v.mjesta} \)

\[\mathbf{C}_{\text{ALT}} = 1 + 0,001 \cdot a_s = 1,1 \] (\(a_s \)-nadmorska visina mjesta – za Split = 100 m)

\[\mathbf{v}_{\text{ref}} = \mathbf{c}_{\text{DIR}} \cdot \mathbf{c}_{\text{TEM}} \cdot \mathbf{c}_{\text{ALT}} \cdot \mathbf{v}_{\text{ref},0} = 1,0 \cdot 1,0 \cdot 1,1 \cdot 30 \]

\(\mathbf{v}_{\text{ref}} = 33 \text{ m/s} \)

\(\rho = 1,25 \text{ kg/m}^3 \) (=> gustoća zraka)

\[q_{\text{ref}} = \frac{1}{2} \cdot \rho \cdot \mathbf{v}_{\text{ref}}^2 = \frac{1}{2} \cdot 1,25 \cdot 33^2 \]

\(q_{\text{ref}} = 0,68 \text{ kN/m}^2 \)

Iz dijagrama očitano: \(\mathbf{c}_e(z)=2.0 \) (za kategorija terena III i visinu objekta H=7,35 m)
h = 7,35 m

e = min (b; 2h) = min (34,2 m; 14,7 m)

Koeficijent vanjskog pritiska

<table>
<thead>
<tr>
<th>PODRUČJE</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>l=J</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cpe,10</td>
<td>+0,8</td>
<td>-0,3</td>
<td>-1,76</td>
<td>-1,2</td>
<td>-0,62</td>
<td>-0,3</td>
</tr>
</tbody>
</table>

Pritisak vjetra na vanjske površine

\[w_e = q_{ref} \cdot c_e(z_e) \cdot Cpe \quad [kN/m^2] \]

<table>
<thead>
<tr>
<th>PODRUČJE</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>l=J</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cpe,10</td>
<td>+0,8</td>
<td>-0,3</td>
<td>-1,76</td>
<td>-1,2</td>
<td>-0,62</td>
<td>-0,3</td>
</tr>
<tr>
<td>W_e (kN/m²)</td>
<td>+0,54</td>
<td>-0,20</td>
<td>-1,20</td>
<td>-0,82</td>
<td>-0,42</td>
<td>-0,20</td>
</tr>
</tbody>
</table>

Koeficijent unutarnjeg pritiska

\[c_{pi}= \pm0,3 \]

Pritisak vjetra na unutarnje površine

\[w_i = q_{ref} \cdot c_i(z_e) \cdot c_{pi} = 0,68 \cdot 2,0 \cdot (\pm0,30) = \pm0,41 \quad [kN/m^2] \]

Rezultirajuće djelovanje vjetra

\[w_k = w_e - w_i \quad (kN/m^2) \]

\[W_k = w_k \cdot l \ (l=5,7 \ m; \ razmak \ okvira) \quad (kN/m) \]

-Vjetar W₁ (pozitivni unutarnji pritisak c_{pi}=+0,3)

<table>
<thead>
<tr>
<th>PODRUČJE</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>l=J</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_e (kN/m²)</td>
<td>+0,54</td>
<td>-0,20</td>
<td>-1,20</td>
<td>-0,82</td>
<td>-0,42</td>
<td>-0,20</td>
</tr>
</tbody>
</table>
Metalne konstrukcije

ZAVRŠNI RAD

Fakultet građevinarstva, arhitekture i geodezije

Split, 2015.

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I=J</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_e (kN/m²)</td>
<td>+0,54</td>
<td>-0,20</td>
<td>-1,20</td>
<td>-0,82</td>
<td>-0,42</td>
<td>-0,20</td>
</tr>
<tr>
<td>W_i (kN/m²)</td>
<td>-0,41</td>
<td>-0,41</td>
<td>-0,41</td>
<td>-0,41</td>
<td>-0,41</td>
<td>-0,41</td>
</tr>
<tr>
<td>W_k (kN/m²)</td>
<td>+0,13</td>
<td>-0,61</td>
<td>-1,61</td>
<td>-1,23</td>
<td>-0,83</td>
<td>-0,61</td>
</tr>
<tr>
<td>W_k (kN/m')</td>
<td>+0,74</td>
<td>-3,48</td>
<td>-9,18</td>
<td>-7,01</td>
<td>-4,73</td>
<td>-3,48</td>
</tr>
</tbody>
</table>

-Vjetar W₂ (negativni unutarnji pritisak $c_p=-0,3$)

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I=J</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_e (kN/m²)</td>
<td>+0,95</td>
<td>+0,21</td>
<td>-0,79</td>
<td>-0,41</td>
<td>-0,01</td>
<td>+0,21</td>
</tr>
<tr>
<td>W_i (kN/m²)</td>
<td>+5,42</td>
<td>+1,20</td>
<td>-4,50</td>
<td>-2,34</td>
<td>-0,06</td>
<td>+1,20</td>
</tr>
<tr>
<td>W_k (kN/m²)</td>
<td>+0,54</td>
<td>-0,20</td>
<td>-1,20</td>
<td>-0,82</td>
<td>-0,42</td>
<td>-0,20</td>
</tr>
<tr>
<td>W_i (kN/m²)</td>
<td>-0,41</td>
<td>-0,41</td>
<td>-0,41</td>
<td>-0,41</td>
<td>-0,41</td>
<td>-0,41</td>
</tr>
<tr>
<td>W_k (kN/m²)</td>
<td>+0,13</td>
<td>-0,61</td>
<td>-1,61</td>
<td>-1,23</td>
<td>-0,83</td>
<td>-0,61</td>
</tr>
<tr>
<td>W_k (kN/m')</td>
<td>+0,74</td>
<td>-3,48</td>
<td>-9,18</td>
<td>-7,01</td>
<td>-4,73</td>
<td>-3,48</td>
</tr>
</tbody>
</table>
2.3. SILE U ČVOROVIMA

2.3.1. Sile od stalnog opterećenja

\[G = g \cdot l \cdot a = 0,55 \cdot 5,7 \cdot 2,15 = 6,74 \text{ kN} \]
\[G / 2 = g \cdot l \cdot a / 2 = 0,55 \cdot 5,7 \cdot 2,15 / 2 = 3,37 \text{ kN} \]

2.3.2. Sile od opterećenja snijegom

\[S = F_s \cdot a = 2,05 \cdot 2,15 = 4,41 \text{ kN} \]
\[S / 2 = F_s \cdot a / 2 = 2,05 \cdot 2,15 / 2 = 2,20 \text{ kN} \]
2.3.3. Sile od opterećenja vjetrom \(W_1 \)

\[
W_1 = W_{kG} \cdot a / 2 = -2.34 \cdot 2.15 / 2 = -2.52 \text{kN}
\]

\[
W_2 = W_3 = W_4 = W_{kH} \cdot a = -0.06 \cdot 2.15 = -0.13 \text{kN}
\]

\[
W_5 = W_6 = W_7 = W_8 = W_{kI} \cdot a = 1.20 \cdot 2.15 = 2.58 \text{kN}
\]

\[
W_9 = W_{kI} \cdot a / 2 = 1.20 \cdot 2.15 / 2 = 1.29 \text{kN}
\]

\[
w_{kD} = 5.42 \text{kN/m}
\]

\[
W_D = w_{kD} \cdot 0.275 = 5.42 \cdot 0.275 = 1.49 \text{kN}
\]

\[
w_{kE} = 1.20 \text{kN/m}
\]

\[
W_E = w_{kE} \cdot 0.275 = 1.20 \cdot 0.275 = 0.33 \text{kN}
\]
2.3.4. Sile od opterećenja vjetrom W_2

$W_1 = W_{kG} \cdot a / 2 = -7,01 \cdot 2,15 / 2 = -7,54 \, kN$

$W_2 = W_3 = W_4 = W_{kH} \cdot a = -4,73 \cdot 2,15 = -10,17 \, kN$

$W_5 = W_6 = W_7 = W_8 = W_{kI} \cdot a = -3,48 \cdot 2,15 = -7,48 \, kN$

$W_9 = W_{kI} \cdot a / 2 = -3,48 \cdot 2,15 / 2 = -3,74 \, kN$

$w_{kD} = 0,74 \, kN/m$

$W_D = w_{kD} \cdot 0,55 = 0,74 \cdot 0,55 = 0,41 \, kN$

$w_{kE} = -3,48 \, kN/m$

$W_E = w_{kE} \cdot 0,55 = -3,48 \cdot 0,55 = -1,91 \, kN$
3. DJAGRAMI UNUTARNJIH SILA ZA POJEDINA OPTEREĆENJA

3.1. VLASTITA TEŽINA KONSTRUKCIJE

M \([\text{kNm}]\)

Slika 3.1.1. Momentni dijagram vlastite težine konstrukcije

V \([\text{kN}]\)

Slika 3.1.2. Dijagram poprećnih sila vlastite težine konstrukcije
Slika 3.1.3. Dijagram uzdužnih sila vlastite težine konstrukcije

3.2. STALNO OPTEREĆENJE – KROVNA PLOHA

M [kNm]

Slika 3.2.1. Momentni dijagram stalnog opterećenja
V [kN]

Slika 3.2.2. Dijagram poprečnih sila stalnog opterećenja

N [kN]

Slika 3.2.3. Dijagram uzdužnih sila stalnog opterećenja
3.3. OPTEREĆENJE OD SNIJEGOM – KROVNA PLOHA

M [kNm]

Slika 3.3.1. Momentni dijagram opterećenja snijegom

V [kN]

Slika 3.3.2. Dijagram poprečnih sila opterećenja snijegom
3.4. OPTEREĆENJE VJETROM W_1

Slika 3.3.3. Dijagram uzdužnih sila opterećenja snijegom

Slika 3.4.1. Momentni dijagram opterećenja vjetrom W_1
V [kN]

Slika 3.4.2. Dijagram poprečnih sila opterećenja vjetrom W_1

N [kN]

Slika 3.4.3. Dijagram uzdužnih sila opterećenja vjetrom W_1
3.5. OPTEREĆENJE VJETROM W_2

M [kNm]

Slika 3.5.1. Momentni dijagram opterećenja vjetrom W_2

V [kN]

Slika 3.5.2. Dijagram poprečnih sila opterećenja vjetrom W_2
3.6. NAJKRITIČNIJE KOMBINACIJE DJELOVANJA

3.6.1. Kombinacija GSN1 \([1,35 \times (\Delta g + G) + 1,5 \times S]\)

\[N [kN] \]

\[M [kNm] \]

[Slika 3.5.3. Dijagram uzdužnih sila opterećenja vjetrom \(W_2\)]

[Slika 3.6.1.1. Momentni dijagram]
Slika 3.6.1.2. Dijagram poprečnih sila

V [kN]

Slika 3.6.1.3. Dijagram uzdužnih sila

N [kN]
3.6.2. Kombinacija GSN2 [1,0 + (Δg + G) + 1,5 x W2]

M [kNm]

Slika 3.6.2.1. Momentni dijagram

V [kN]

Slika 3.6.2.2. Dijagram poprečnih sila
N [kN]

Slika 3.6.2.3. Dijagram uzdužnih sila
4. KONTROLA PROGIBA GS

Kod graničnog stanja uporabljivosti provjerava se vertikalni progib rešetke u sredini koji ne smije prekoračiti vrijednost od L/300, pri čemu je L duljina donjeg pojasa rešetke i horizontalni pomak na vrhu stupa koji ne smije prekoračiti vrijednost H/150 pri čemu je H visina stupa. Parcijalni koeficijenti sigurnosti kod kontrole GSU su jednaki jedinici.

4.1. VERTIKALNI PROGIB U SREDINI DONJEG POJASA KROVNE REŠETKE

Mjerodavna kombinacija : GSU1 (1,0G + 1,0Δg + 1,0S)

Prikaz pomaka za navedenu kombinaciju (vrijednosti su prikazane u milimetrima):

Slika 4.1.1. Vertikalni progib rešetke

Najveći progib $\delta_{\text{max}}=4,42$ cm je manji od dopuštenog $L/300=1720/300=5,73$ cm.

Iskoristivost: 77,14%
4.2. HORIZONTALNI POMAK VRHA STUPA

Mjerodavna kombinacija: GSU2 (1,0xG + 1,0xΔg + 1,0xW₂)

Prikaz pomaka za navedenu kombinaciju (vrijednosti su prikazane u milimetrima):

Slika 4.2.1. Horizontalni pomak stupa

Najveći pomak $\delta_{\text{max}}=3,39$ cm je manji od dopuštenog H/150=620/150=4,13 cm.

Iskoristivost: 82,08%
5. DIMENZIONIRANJE KONSTRUKTIVNOG SUSTAVA

5.1. DIMENZIONIRANJE REŠETKE KONSTRUKTIVNOG SUSTAVA

5.1.1. Pojasevi

Maksimalna uzdužna tlačna sila u gornjem pojasu – GSN1 \([1,35 \times (\Delta g + G) + 1,5 \times S]\)

![Diagram](image)

MATERIJAL
- \(f_y = 355 \text{ N/mm}^2\)
- \(f_u = 510 \text{ N/mm}^2\)
- \(e = 0,814\)
- \(E = 210000 \text{ N/mm}^2\)
- \(G = 80777 \text{ N/mm}^2\)
- \(v = 0,3\)

PARAMETRI
- \(A = 15,927 \text{ cm}^2\)
- \(A_y = 5,000 \text{ cm}^2\)
- \(A_z = 7,000 \text{ cm}^2\)
- \(I_y = 217,262 \text{ cm}^4\)
- \(W_y = 43,452 \text{ cm}^3\)
- \(W_{plz} = 52,911 \text{ cm}^3\)
- \(I_y = 3,693 \text{ cm}\)

REZNE SILE
- \(N_{Sd} = -209,67 \text{ kN}\)

PARC. FAKTORI SIG.
- \(\gamma_{M_0} = 1,1\)
- \(\gamma_{M_1} = 1,1\)
- \(\gamma_{M_2} = 1,25\)

KLASIFIKACIJA POPREČNOG PRESJEKA

HRBAT
- \(h - 3 \cdot t_f \leq 33 \cdot e = 26,85 \Rightarrow \text{KLASA 1}\)

POJASENICA
- \(b - 3 \cdot t_w \leq 33 \cdot e = 26,85 \Rightarrow \text{KLASA 1}\)

POPREČNI PRESJEK JE SVRSTAN U KLASU 1
ZAVRŠNI RAD
Metalne konstrukcije

OTPORNOST POPREČNOG PRESJEKA

UZDUŽNA SILA N_{sd}

$$ N_{c,Rd} = \frac{A \cdot f_y}{\gamma_{Mo}} = 514,01 \text{ kN} \geq N_{sd} = 209,67 \text{ kN} $$

OTPORNOST ELEMENTA

UZDUŽNA TLAČNA OTPORNOST

$$ \lambda_1 = \pi \cdot \sqrt{\frac{E}{f_y}} = 76,41 \quad \beta_A = 1.00 $$

OS Y-Y

$$ l_y = 215 \text{ cm} \quad I_y = 68,21 $$

OS Z-Z

$$ l_z = 215 \text{ cm} \quad I_z = 68,95 $$

$$ \lambda_y = \frac{l_y}{I_y} = 58,21 \quad \lambda_z = \frac{l_z}{I_z} = 68,95 $$

$$ \lambda_{y1} = \frac{\lambda_y}{\lambda_1} \cdot \sqrt{\beta_A} = 0,762 \quad \lambda_{z1} = \frac{\lambda_z}{\lambda_1} \cdot \sqrt{\beta_A} = 0,902 $$

LINIJA IZVJELNJANJA a

$$ \lambda_y = 0,8168 \quad \lambda_z = 0,7324 $$

$$ N_{b,Rd} = \lambda_{min} \cdot N_{c,Rd} = 376,45 \text{ kN} \geq N_{sd} = 209,67 \text{ kN} $$

Iskoristivost: 55,69%
Maksimalna uzdužna vlačna sila u donjem pojasu – GSN1 \([1,35 \times (\Delta g + G) + 1,5 \times S]\)

<table>
<thead>
<tr>
<th>MATERIJAL</th>
<th>PARAMETRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_y = 355 \text{ N/mm}^2)</td>
<td>(A = 15,927 \text{ cm}^2)</td>
</tr>
<tr>
<td>(f_u = 510 \text{ N/mm}^2)</td>
<td>(A_y = 5,000 \text{ cm}^2)</td>
</tr>
<tr>
<td>(\varepsilon = 0,814)</td>
<td>(A_z = 7,000 \text{ cm}^2)</td>
</tr>
<tr>
<td>(E = 210000 \text{ N/mm}^2)</td>
<td>(I_y = 217,262 \text{ cm}^4)</td>
</tr>
<tr>
<td>(G = 80777 \text{ N/mm}^2)</td>
<td>(W_y = 43,452 \text{ cm}^3)</td>
</tr>
<tr>
<td>(\nu = 0.3)</td>
<td>(W_{plz} = 52,911 \text{ cm}^3)</td>
</tr>
<tr>
<td>(REZNE SIJE)</td>
<td>(i_y = 3,693 \text{ cm})</td>
</tr>
<tr>
<td>(N_{sd} = 208,1 \text{ kN})</td>
<td>(\gamma_{Mo} = 1,1)</td>
</tr>
<tr>
<td>(PARC. FAKTORI SIG.)</td>
<td>(W_z = 38,717 \text{ cm}^3)</td>
</tr>
<tr>
<td>(\gamma_{M1} = 1,1)</td>
<td>(W_{plz} = 45,484 \text{ cm}^3)</td>
</tr>
<tr>
<td>(\gamma_{M2} = 1,25)</td>
<td>(i_z = 3,118 \text{ cm})</td>
</tr>
<tr>
<td></td>
<td>(I_z = 711,111 \text{ cm}^4)</td>
</tr>
<tr>
<td></td>
<td>(i_0 = 0,000 \text{ cm}^3)</td>
</tr>
</tbody>
</table>

KLASIFIKACIJA POPREČNOG PRESJEKA

HRBAT

\[
\frac{h - 3 \cdot t_f}{t_w} = 17,00 \leq 33 \cdot \varepsilon = 26,85 \Rightarrow \text{KLASA 1}
\]

POJASNICA

\[
\frac{b - 3 \cdot t_w}{t_f} = 13,00 \leq 33 \cdot \varepsilon = 26,85 \Rightarrow \text{KLASA 1}
\]

TOPORNOST POPREČNOG PRESJEKA

UZDUŽNA SILA \(N_{sd} \)

\[
N_{c,Rd} = \frac{A \cdot f_y}{\gamma_{Mo}} = 514,01 \text{ kN} \geq N_{sd} = 208,1 \text{ kN}
\]

Iskoristivost: 40,48%
Kontrola tlačne sile koja se javlja u donjem pojasu – GSN2 \[1,0 \times (\Delta g + G) + 1,5 \times W_2\]

\[N_{sd} = -91,63 \text{ kN}\]

MATERIJAL
- \(f_y = 355 \text{ N/mm}^2\)
- \(f_g = 510 \text{ N/mm}^2\)
- \(\varepsilon = 0,814\)
- \(E = 210000 \text{ N/mm}^2\)
- \(G = 80777 \text{ N/mm}^2\)
- \(\nu = 0.3\)

PARAMETRI
- \(A = 15,927 \text{ cm}^2\)
- \(A_y = 5,000 \text{ cm}^2\)
- \(A_z = 7,000 \text{ cm}^2\)
- \(l_y = 217,262 \text{ cm}^4\)
- \(W_y = 43,452 \text{ cm}^3\)
- \(W_{plv} = 52,911 \text{ cm}^3\)
- \(i_y = 3,693 \text{ cm}\)
- \(l_z = 154,867 \text{ cm}^4\)
- \(W_z = 38,717 \text{ cm}^3\)
- \(W_{plz} = 45,484 \text{ cm}^3\)
- \(i_z = 3,118 \text{ cm}\)
- \(l_0 = 711,111 \text{ cm}^4\)
- \(l_\varnothing = 0.000 \text{ cm}^6\)

KLASIFIKACIJA POPREČNOG PRESJEKA

HRBAT

\[
\frac{h - 3 \cdot t_f}{t_w} = 17,00 \quad \leq \quad 33 \cdot \varepsilon = 26,85 \quad \Rightarrow \quad \text{KLASA 1}
\]

POJASNICA

\[
\frac{b - 3 \cdot t_w}{t_f} = 13,00 \quad \leq \quad 33 \cdot \varepsilon = 26,85 \quad \Rightarrow \quad \text{KLASA 1}
\]

POPREČNI PRESJEK JE SVRSTAN U KLASU 1

OTPORNOST POPREČNOG PRESJEKA

UZDUŽNA SILA \(N_{sd}\)

\[
N_{o,Rd} = \frac{A \cdot f_y}{\gamma_M} = 514,01 \text{ kN} \quad \geq \quad N_{sd} = 91,63 \text{ kN}
\]
OTPORNOST ELEMENTA

UZDUŽNA TLACNA OTPORNOST

\[\lambda_1 = \pi \sqrt{\frac{E}{f_y}} = 76,41 \quad \beta_A = 1.00 \]

OS Y-Y \quad OS Z-Z

\[I_y = 430 \text{ cm} \quad I_z = 430 \text{ cm} \]

\[\lambda_y = \frac{I_y}{l_y} = 116,42 \quad \lambda_z = \frac{I_z}{l_z} = 137,90 \]

\[\lambda_{\overline{y}} = \frac{\lambda_y}{\lambda_1} \cdot \sqrt{P_A} = 1,524 \quad \lambda_{\overline{z}} = \frac{\lambda_z}{\lambda_1} \cdot \sqrt{P_A} = 1,805 \]

LINIJA IZVIJANJA a \quad LINIJA IZVIJANJA a

\[\chi_y = 0,3626 \quad \chi_z = 0,2690 \]

\[N_{b,Rd} = \chi_{\min} \cdot N_{c,Rd} = \textbf{138,25 kN} \quad N_{Sd} = 91,83 \text{ kN} \]
5.1.2. Vertikale

Tlak: Nsd = -50,42 kN

Vlak: Nsd = 14,16 kN

(Dimenzionirane su na maksimalnu uzdužnu tlačnu silu. Izabrani profil zadovoljava i proračun na vlačnu silu.)

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>PARAMETRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_y = 355 N/mm²</td>
<td>A = 8,273 cm²</td>
</tr>
<tr>
<td>f_c = 510 N/mm²</td>
<td>A_y = 2,880 cm²</td>
</tr>
<tr>
<td>ε = 0,014</td>
<td>A_z = 2,880 cm²</td>
</tr>
<tr>
<td>E = 210000 N/mm²</td>
<td></td>
</tr>
<tr>
<td>G = 80777 N/mm²</td>
<td></td>
</tr>
<tr>
<td>ν = 0,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>REZNE SILE</td>
<td></td>
</tr>
<tr>
<td>N_Sd = -50,42 kN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>PARC. FAKTORI SIG.</td>
<td></td>
</tr>
<tr>
<td>γ_Mc = 1,1</td>
<td></td>
</tr>
<tr>
<td>γ_M1 = 1,1</td>
<td></td>
</tr>
<tr>
<td>γ_M2 = 1,25</td>
<td></td>
</tr>
</tbody>
</table>

60x60x4

KLASIFIKACIJA POPREČNOG PRESJEKA

HRBAT

\[
\frac{h - 3 \cdot t_f}{t_w} = 12,00 \leq 33 \cdot \varepsilon = 26,85 \Rightarrow KLASA 1
\]

POJASNICA

\[
\frac{b - 3 \cdot t_w}{t_f} = 12,00 \leq 33 \cdot \varepsilon = 26,85 \Rightarrow KLASA 1
\]

POPREČNI PRESJEK JE SVRSTAN U KLASU 1

OTPORNOST POPREČNOG PRESJEKA

UZDUŽNA SILA N_Sd

\[
N_{c,Rd} = \frac{A \cdot f_y}{\gamma_{M0}} = 267 \text{ kN} \geq N_Sd = 50,42 \text{ kN}
\]
OTPORNOST ELEMENTA

UZDUŽNA TLAČNA OTPORNOST

\[\lambda_1 = \frac{\pi}{\sqrt{\frac{E}{f_y}}} = 76.41, \quad \beta = 1.00 \]

OS Y-Y: \(\lambda_y = \frac{l_y}{L_y} = 24.42 \)

OS Z-Z: \(\lambda_z = \frac{l_z}{L_z} = 24.42 \)

\[\lambda_y = \frac{\lambda_y}{\lambda_1} \cdot \sqrt{\beta} = 0.320 \quad \lambda_z = \frac{\lambda_z}{\lambda_1} \cdot \sqrt{\beta} = 0.320 \]

LINIJA IZVLJANJA \(\chi_y = 0.9729 \)

\[N_{b,Rd} = \chi_{mn} \cdot N_{C,Rd} = 259.75 \text{ kN} \quad \geq \quad N_{Sd} = 50.42 \text{ kN} \]

Iskoristivost: 19.41\%
5.1.3. Dijagonale

Tlak: \(N_{sd} = -15,31 \text{kN} \)

Vlak: \(N_{sd} = 132,31 \text{kN} \)

(Dimenzionirane su na maksimalnu uzdužnu vlačnu silu. Izabrani profil zadovoljava i nosivost na tlak.)

Materijal
- \(f_y = 355 \text{N/mm}^2 \)
- \(f_u = 510 \text{N/mm}^2 \)
- \(v = 0,814 \)
- \(E = 210000 \text{N/mm}^2 \)
- \(G = 80777 \text{N/mm}^2 \)
- \(v = 0,3 \)

Parametri
- \(A = 8,273 \text{cm}^2 \)
- \(A_y = 2,880 \text{cm}^2 \)
- \(A_z = 2,880 \text{cm}^2 \)
- \(I_y = 41,956 \text{cm}^4 \)
- \(W_y = 13,985 \text{cm}^3 \)
- \(W_{plv} = 16,801 \text{cm}^3 \)
- \(l_y = 2,252 \text{cm} \)
- \(I_z = 41,956 \text{cm}^4 \)
- \(W_z = 13,985 \text{cm}^3 \)
- \(W_{plz} = 16,801 \text{cm}^3 \)
- \(l_z = 2,252 \text{cm} \)
- \(I_t = 216,000 \text{cm}^4 \)
- \(I_{lo} = 0,000 \text{cm}^6 \)

Rezne sile
- \(N_{sd} = 132,31 \text{kN} \)

Parc. faktori sig.
- \(\gamma_{M0} = 1,1 \)
- \(\gamma_{M1} = 1,1 \)
- \(\gamma_{M2} = 1,25 \)

OTPORNOST POPREČNOG PRESJEKA

Uzdužna sila \(N_{sd} \)

\[
N_{c,Rd} = \frac{A \cdot f_y}{\gamma_{M0}} = 267 \text{kN} \geq N_{sd} = 132,31 \text{kN}
\]

Iskoristivost: 49,55%
5.2. DIMENZIONIRANJE STUPOVA KONSTRUKTIVNOG SUSTAVA

5.2.1. Prva kombinacija

MATERIJAL

- \(f_y = 355 \, \text{N/mm}^2 \)
- \(f_u = 510 \, \text{N/mm}^2 \)
- \(\varepsilon = 0.814 \)
- \(E = 210000 \, \text{N/mm}^2 \)
- \(G = 80777 \, \text{N/mm}^2 \)
- \(\nu = 0.3 \)

PARAMETRI

- \(A = 78830 \, \text{cm}^2 \)
- \(A_y = 59737 \, \text{cm}^2 \)
- \(A_x = 17940 \, \text{cm}^2 \)
- \(I_y = 7763172 \, \text{cm}^4 \)
- \(W_y = 675068 \, \text{cm}^3 \)
- \(W_{plz} = 744823 \, \text{cm}^3 \)
- \(i_y = 10052 \, \text{cm} \)
- \(l_x = 2768805 \, \text{cm}^4 \)
- \(W_x = 230734 \, \text{cm}^3 \)
- \(W_{plz} = 351692 \, \text{cm}^3 \)
- \(i_x = 6003 \, \text{cm} \)
- \(l_t = 41552 \, \text{cm}^4 \)
- \(l_0 = 328485888 \, \text{cm}^3 \)

KLASIFIKACIJA POPREČNOG PRESJEKA

HRBAT

\[
\frac{d}{t_w} = 21.87 \leq \frac{396}{13 \cdot \alpha - 1} \cdot \varepsilon = 50.06, \quad \alpha = 0.57 \quad \Rightarrow \text{KLASA } 1
\]

POJASNICA

\[
\frac{c}{t_f} = 10.00 \leq 15 \cdot \varepsilon = 12.20 \quad \Rightarrow \text{KLASA } 3
\]

POPREČNI PRESJEK JE SVRSTAN U KLASSU 3

OTPORNOST POPREČNOG PRESJEKA

UZDUŽNA SILA \(N_{sd} \)

\[
N_{c,Rd} = \frac{A \cdot f_y}{\gamma_{M0}} = 2479.69 \, \text{kN} \geq N_{sd} = 57.18 \, \text{kN}
\]

MOMENT SAVLJANJA \(M_{y,sd} \)

\[
M_{y,Rd} = \frac{W_y \cdot f_y}{\gamma_{M0}} = 217.88 \, \text{kNrm} \geq M_{y,sd} = 5.29 \, \text{kNrm}
\]

POPREČNA SILA \(V_{z,sd} \)

\[
\frac{d}{t_w} = 21.87 \leq 69 \cdot \varepsilon = 56.14
\]

\(\Rightarrow \) provjera izbočavanja hrpta nije potrebna
ZAVRŠNI RAD
Metalne konstrukcije

\[V_{z,\text{rd}} = \frac{A_{v,z} \cdot f_y}{\sqrt{3} \cdot \gamma_{M0}} = 334,27 \text{ kN} \geq V_{z,\text{sd}} = 0,85 \text{ kN} \]

INTERAKCIJA M - N - V

\[n = \frac{N_{\text{sd}}}{N_{\text{rd}}} = 0,023 \]

\[M_{y,\text{sd}} = 0,024 \leq 1 - n = 0,977 \]

OTPORNOST ELEMENTA

UZDUŽNA TLAČNA OTPORNOST

\[\lambda_1 = \frac{E}{f_y} = 76,41 \text{, } \beta_\lambda = 1.00 \]

OS Y-Z

\[l_{y} = 1240 \text{ cm} \quad l_{z} = 310 \text{ cm} \]

\[\lambda_y = \frac{l_{y}}{l_{y}} = 123,38 \quad \lambda_z = \frac{l_{z}}{l_{z}} = 51,64 \]

\[\bar{\lambda}_y = \frac{\lambda_y}{\lambda_1} \cdot \sqrt{\beta_\lambda} = 1,614 \quad \bar{\lambda}_z = \frac{\lambda_z}{\lambda_1} \cdot \sqrt{\beta_\lambda} = 0,676 \]

\[h/b = 0,96 \leq 1,2 \]

\[t_1 = 12 \text{ mm} \leq 100 \text{ mm} \]

LINIJA IZVIJANJA b

\[\chi_{y} = 0,3033 \]

LINIJA IZVIJANJA c

\[\chi_{z} = 0,7396 \]

\[N_{b,\text{rd}} = \chi_{\text{mn}} \cdot N_{c,\text{rd}} = 752,12 \text{ kN} \geq N_{\text{sd}} = 57,18 \text{ kN} \]

OTPORNOST NA BOČNO IZVIJANJE

\[g = 0 \text{ cm} \quad L = 620 \text{ cm} \]

\[k = 0,7 \quad k_w = 0,7 \quad C_1 = 1,036 \quad C_2 = 0,366 \]

\[M_{c,r} = C_1 \cdot \frac{\pi^2 \cdot E \cdot l_z}{(k \cdot L)^2} \cdot \left(C_2 \cdot g + \sqrt{\frac{k^2 \cdot l_0}{k_w^2 \cdot l_z} + \frac{(k \cdot L)^2 \cdot G \cdot l_t}{\pi^2 \cdot E \cdot l_z} + (C_2 \cdot g)^2} \right) \]

\[M_{c,r} = 477,44 \text{ kNm} \]
\[\chi_{LT} = \sqrt{\frac{\beta_w \cdot W_{pl,y} \cdot f_y}{M_{cr}}} = 0,708 > 0,4 \]

MJERODANJA LINIJA IZVIJANJA

\[\chi_{LT} = 0,8437 \]

\[M_{b,rd} = \chi_{LT} \cdot \frac{\beta_w \cdot W_{pl,y} \cdot f_y}{\gamma_{M1}} = 183,81 \text{ kNm} \geq M_{y,rd} = 5,29 \text{ kNm} \]

INTERAKCIJA M - N BEZ BOČNOG IZVIJANJA

\[\beta_{M,Y} = 1,300 \]

\[\mu_y = \chi_y \cdot (2 \cdot \beta_{M,Y} - 4) = -2,260 \leq 0,9 \]

\[k_y = 1 - \frac{\mu_y \cdot N_{sd}}{\chi_y \cdot A \cdot f_y} = 1,156 \leq 1,5 \]

\[\frac{N_{sd}}{A \cdot f_y} \cdot \frac{k_y \cdot M_{y,rd}}{W_{y} \cdot f_y} = 0,104 \leq 1 \]

INTERAKCIJA M - N S BOČNIM IZVIJANJEM

\[\beta_{M,LT} = 1,300 \]

\[\mu_{LT} = \chi_{LT} \cdot (2 \cdot \beta_{M,LT} - 4) = -0,018 \leq 0,9 \]

\[k_{LT} = 1 - \frac{\mu_{LT} \cdot N_{sd}}{\chi_{LT} \cdot A \cdot f_y} = 1,001 > 1,0 \Rightarrow k_{LT} = 1,0 \]

\[\frac{N_{sd}}{A \cdot f_y} \cdot \frac{k_{LT} \cdot M_{y,rd}}{W_{y} \cdot f_y} = 0,060 \leq 1 \]
5.2.2. Druga kombinacija

MATERIJAL
- $f_y = 355 \text{ N/mm}^2$
- $f_u = 510 \text{ N/mm}^2$
- $\varepsilon = 0.814$
- $E = 210000 \text{ N/mm}^2$
- $G = 80777 \text{ N/mm}^2$
- $\nu = 0.3$

REZIJE SILI
- $N_{sd} = -33.24 \text{ kN}$
- $V_{zz, sd} = 30.2 \text{ kN}$
- $M_{y, sd} = 65.82 \text{ kNm}$

PARAMETRI
- $A = 76.836 \text{ cm}^2$
- $A_y = 59.737 \text{ cm}^2$
- $A_z = 17.940 \text{ cm}^2$
- $I_y = 7783.172 \text{ cm}^4$
- $W_{fy} = 675.056 \text{ cm}^3$
- $W_{fy} = 744.823 \text{ cm}^3$
- $I_y = 10.052 \text{ cm}$
- $I_x = 2768.805 \text{ cm}^4$
- $W_{y, x} = 230.734 \text{ cm}^3$
- $W_{pz} = 351.692 \text{ cm}^3$
- $I_y = 6.003 \text{ cm}$
- $I_y = 41.552 \text{ cm}^4$
- $I_y = 328485.888 \text{ cm}^6$

KLASSIFIKACIJA POPRECNOG PRESJEKA

HRBAT

\[
\frac{d}{t_w} = 21.87 \leq \frac{396}{13 \cdot \alpha \cdot 1} \cdot \varepsilon = 53.31 \cdot \alpha = 0.54 \Rightarrow \text{KLASA 1}
\]

POJASNICA

\[
\frac{c}{t_f} = 10.00 \leq 15 \cdot \varepsilon = 12.20 \Rightarrow \text{KLASA 3}
\]

OPTPNOST POPRECNOG PRESJEKA

UZDUŽNA SILA N_{sd}

\[
N_{sd} = \frac{A \cdot f_y}{\gamma_{MO}} = 2479.69 \text{ kN} \geq N_{sd} = 33.24 \text{ kN}
\]

MOMENT SAVIJANJA $M_{y, sd}$

\[
M_{y, Rd} = \frac{W_{fy} \cdot f_y}{\gamma_{MO}} = 217.86 \text{ kNm} \geq M_{y, sd} = 85.82 \text{ kNm}
\]

POPREČNA SILA $V_{z, sd}$

\[
\frac{d}{t_w} = 21.87 \leq 69 \cdot \varepsilon = 56.14
\]

\Rightarrow provjera izbočavanja hrpta nije potrebna

\[
V_{z, Rd} = \frac{A_{v, z} \cdot f_y}{\sqrt{3} \cdot \gamma_{MO}} = 334.27 \text{ kN} \geq V_{z, sd} = 30.2 \text{ kN}
\]
INTERAKCIJA M - N - V

\[
n = \frac{N_{sd}}{N_{rd}} = 0,013
\]

\[
\frac{M_{y,sd}}{M_{y,rd}} = 0,394 \quad \leq \quad 1 - n = 0,987
\]

OTPORNOST ELEMENTA

UZDUŽNA TLAČNA OTPORNOST

\[
\lambda_1 = \sqrt[3]{\frac{E}{f_y}} = 76,41 \quad \beta_A = 1,00
\]

OS Y-Y

\[
l_y = 1240 \text{ cm} \quad \lambda_y = \frac{l_y}{b} = 123,36
\]

\[
\gamma_y = \lambda_y \cdot \sqrt{\beta_A} = 1,614
\]

OS Z-Z

\[
l_z = 310 \text{ cm} \quad \lambda_z = \frac{l_z}{b} = 51,64
\]

\[
\gamma_z = \lambda_z \cdot \sqrt{\beta_A} = 0,676
\]

\[
h/b = 0,96 \quad \leq \quad 1,2
\]

\[
t_l = 12 \text{ mm} \quad \leq \quad 100 \text{ mm}
\]

LINIJA IZVIJANJA b

\[
\chi_y = 0,3033
\]

LINIJA IZVIJANJA c

\[
\chi_z = 0,7396
\]

\[
N_{b,rd} = \chi_{min} \cdot N_{c,rd} = 752,12 \text{ kN} \quad \geq \quad N_{sd} = 33,24 \text{ kN}
\]

OTPORNOST NA BOČNO IZVIJANJE

\[
g = 0 \text{ cm}, \quad L = 820 \text{ cm}
\]

\[
k = 0,7, \quad k_w = 0,7, \quad C_1 = 1,036, \quad C_2 = 0,386
\]

\[
M_{cr} = C_1 \cdot \frac{\pi^2 \cdot E \cdot l_z}{(k \cdot L)^2} \cdot \left(C_2 \cdot g + \right.
\]

\[
+ \left. \sqrt{\frac{k^2}{k_w^2} \cdot \frac{l_z}{l_w} + \frac{(k \cdot L)^2 \cdot G \cdot l_l}{\pi^2 \cdot E \cdot l_z} + (C_2 \cdot g)^2} \right)
\]

\[
M_{cr} = 477,44 \text{ kNm}
\]
ZAVRŠNI RAD

Metalne konstrukcije

Fakultet građevinarstva, arhitekture i geodezije
Split, 2015.

\[\lambda_{LT} = \sqrt{\frac{\beta_w \cdot W_{pl,y} \cdot f_y}{M_{cr}}} = 0,708 > 0,4 \]

MJERODANJA LINIJA IZVIJANJA a \[\Rightarrow \lambda_{LT} = 0,8437 \]

\[M_{b,rd} = \lambda_{LT} \cdot \frac{\beta_w \cdot W_{pl,y} \cdot f_y}{\gamma_{M1}} = 183,81 \text{kNm} \geq M_{y,rd} = 85,82 \text{kNm} \]

INTERAKCIJA M - N BEZ BOČNOG IZVIJANJA

\[\beta_{M,y} = 1,300 \]

\[\mu_y = \lambda_y \cdot (2 \cdot \beta_{M,y} - 4) = -2,260 \leq 0,9 \]

\[k_y = 1 - \frac{\mu_y \cdot N_{sd}}{\lambda_y \cdot A \cdot f_y} = 1,091 \leq 1,5 \]

\[\frac{N_{sd}}{A \cdot f_y} + \frac{k_y \cdot M_{y,rd}}{\gamma_{M1} \cdot W_y \cdot f_y} = 0,474 \leq 1 \]

INTERAKCIJA M - N S BOČNIM IZVIJANJEM

\[\beta_{M,LT} = 1,300 \]

\[\mu_{LT} = \lambda_{LT} \cdot (2 \cdot \beta_{M,LT} - 4) = -0,018 \leq 0,9 \]

\[k_{LT} = 1 - \frac{\mu_{LT} \cdot N_{sd}}{\lambda_{LT} \cdot A \cdot f_y} = 1,000 > 1,0 \Rightarrow k_{LT} = 1,0 \]

\[\frac{N_{sd}}{A \cdot f_y} + \frac{k_{LT} \cdot M_{y,rd}}{\gamma_{M1} \cdot W_y \cdot f_y} = 0,485 \leq 1 \]
6. PRORAČUN SPOJEVA

6.1. DIMENZIONIRANJE VLAČNOG NASTAVKA REŠETKE

6.1.1. Poprečni presjek

Nastavak rešetke gornji pojas (100x80x5) i donji pojas (100x80x5)

Veličina djelovanja: \(N_{sd} = 137,43 \, kN \)

Materijal:

- Osnovni materijal: S 355
- Vijci: M12 k.v. 10.9

6.1.2. Maksimalna debljina vara

\[
a_{\text{max}} = 0,7 \cdot t_{\text{mn}} = 0,7 \cdot 5 = 3,5 \, mm
\]

\[
a_{\text{odabran}} = 3 \, mm
\]

6.1.3. Otpornost vara

\[
L = O = 2 \cdot 100 + 2 \cdot 80 = 360 \, mm
\]

\[
F_{w,Rd} = F_{w,Rk} \cdot \frac{L}{\gamma_{M_w}} = 98,1 \cdot \frac{360}{125} = 282,53 \, kN > N_{sd} = 137,43 \, kN
\]

6.1.4. Otpornost vijaka: M12, n=4

\[
F_{t,Rd} = F_{t,Rk} = 75,9 \cdot 1,25 = 60,72 \, kN
\]

\[
F_{t,Sd} = \frac{N_{sd}}{n} = \frac{137,43}{4} = 34,36 \, kN
\]

\[
F_{t,Sd} < F_{t,Rd}
\]

34,36 kN < 60,72 kN
6.1.5. Proračun dimenzija pločice

\[c = 2d + a\sqrt{2} = 2 \cdot 12 + 3\sqrt{2} = 37 mm \]

\[b_{pl,\text{min}} = 2 \cdot e_2 + p_2 = 2 \cdot 25 + 40 = 90 mm \]

\[b_{pl,\text{max}} = b + 2 \cdot a\sqrt{2} + 20 mm = 100 + 2 \cdot 3\sqrt{2} + 20 = 128,5 mm \]

Odabrane dimenzije ploče: 230x210 (mm)

6.1.6. Proračun minimalne debljine ploče

\[e = 25 mm \]

\[b_{pl} = 230 mm \]

\[M_{sd} = 2 \cdot F_{s,\text{td}} \cdot e = 2 \cdot 34,36 \cdot 0,025 = 1,72 kNm \]

\[M_{sd} \leq \frac{W_{\min}}{1,0} \cdot f_y \Rightarrow W = \frac{1,1 \cdot M_{sd}}{f_y} = \frac{b_{pl} \cdot t_{pl,\text{min}}^2}{6} \]

\[\Rightarrow t_{pl,\text{min}} = \sqrt{\frac{1,1 \cdot M_{sd} \cdot 6}{b_{pl} \cdot f_y}} = \sqrt{\frac{1,1 \cdot 172 \cdot 6}{23 \cdot 35,5}} = 1,18 cm \]

\[t_{pl,\text{oda}} = 1,40 cm \]

Odabrana pločica: 230x210x14 (mm)
6.2. DIMENZIONIRANJE SPOJA STUP – REŠETKA

Veličine djelovanja dobivene su za kombinaciju: GSN2 \([1,0 \times (\Delta g+G)+1,5 \times W2] \)

\[V_{sd} = 30,2 \text{ kN} \]
\[N_{sd} = -33,24 \text{ kN} \]

Materijal:
- Osnovni materijal: S 355
- Vijci: M12 k.v. 10.9

Poprečni presjek
- Profil: HEA 240
 - \(h = 230 \text{ mm} \)
 - \(b = 240 \text{ mm} \)
 - \(t_w = 7,5 \text{ mm} \)
 - \(t_f = 12 \text{ mm} \)

6.2.1. Kontrola varova

\[F_{w,sd} = (30,2^2 + 33,24^2)^{0.5} = 44,91 \text{ kN} \]

Profil HEA 240

Duljina vara
\[l = 2 \cdot 240 + 2 \cdot (230 - 2 \cdot 12) \approx 892 \text{ mm} \]

-Maksimalna debljina vara obzirom na debljinu hrpta i pojaseva nosača:
\[a_{\text{max}} = 0,7 \times t_{\text{mn}} = 0,7 \times 7,5 = 5,25 \text{ mm} \]

Za usvojenu debljinu vara \(a = 5 \text{ mm} \)

\[F_{w,Rd} = \frac{F_{w,Rk}}{1,25} \times \frac{L}{100} = \frac{129,9}{1,25} \times \frac{892}{100} = 926,97 \text{ kN} > F_{w,sd} = 44,91 \text{ kN} \]
Profil 100x80x5

Duljina vara :
\[l = 100 + 2 \cdot (12 + 230/2) = 354 \text{ mm} \]

-Maksimalna debljina vara obzirom na debljinu elementa:
\[a_{\text{max}} = 0.7 \times t_{\text{min}} = 0.7 \times 5 = 3.5 \text{ mm} \]

Za pretpostavljeni var 3,0 mm:
\[F_{w,\text{rd}} = \frac{F_{w,\text{Rk}}}{1.25} < \frac{L}{100} = \frac{98.1 \times 354}{1.25 \times 100} = 277.82 \text{ kN} \]
\[F_{w,\text{rd}} = 44.91 \text{ kN} \]

6.2.2. Proračun vijaka

Uz pretpostavku vijaka M12, udaljenost \(c_{\text{min}} \) iznosi :

Profil HEA 240
\[c_{\text{min}} = 2 \cdot d + a\sqrt{2} = 2 \cdot 12 + 3\sqrt{2} = 28.24 \text{ mm} \]

Profil 100x80x5
\[c_{\text{min}} = 2 \cdot d + a\sqrt{2} = 2 \cdot 12 + 3\sqrt{2} = 28.24 \text{ mm} \]

Odabrano: \(c = 30 \text{ mm} \)

\(e_{1} = 30 \text{ mm} \)

Otpornost vijaka na posmik
\[F_{v,\text{rd}} = \frac{F_{v,\text{rk}}}{\gamma_{M1}} = \frac{42.2}{1.25} = 33.76 \text{ kN} > F_{v,\text{rd}} = \frac{V_{\text{sd}}}{2} = \frac{44.91}{2} = 22.46 \text{ kN} \]

6.2.3. Proračun dimenzija ploče

Proračun duljine i širine ploče:
\[a_{\text{pl}}^{\text{min}} = h + 2 \cdot a\sqrt{2} = 230 + 2 \cdot 3 \cdot \sqrt{2} = 238.48 \text{ mm} \]
\[b_{\text{pl}}^{\text{min}} = b + 2a\sqrt{2} + 20 = 240 + 2 \cdot 3 \cdot \sqrt{2} + 20 = 268.5 \text{ mm} \]
\[b_{\text{pl}}^{\text{min}} = p_{2} + 2 \cdot e_{2} = 40 + 2 \cdot 25 = 90 \text{ mm} \]

Odabrane dimenzije duljine i širine ploče su 300x290mm
Proračun debljine ploče

Pritisak po omotaču rupe osnovnog materijala

\[F_{v,Sd} = \frac{V_{sd}}{2} = 22.46 \text{kN} = F_{b,Sd} < F_{b,Rd} = \frac{F_{b,Rk}}{\gamma_{Mb}} \cdot \frac{t^{pl}}{10} \Rightarrow t^{pl} > \frac{F_{b,Sa} \cdot \gamma_{Mb} \cdot 10}{F_{b,Rk}} \]

\[t^{pl} > \frac{22.46 \cdot 1.25 \cdot 10}{117.7} = 2.38 \text{ cm} \Rightarrow t_{min}^{pl} = 24 \text{ mm} \]

Odarane dimenzije ploče su 300x290x24 mm
6.3. DIMENZIONIRANJE UPETOG SPOJA STUP – TEMELJ

Veličine djelovanja:

\[N_{sd} = -33,24 \text{ kN (tlačna sila)} \]
\[M_{sd} = 85,82 \text{ kNm} \]
\[V_{sd} = 30,20 \text{ kN} \]

Materijal:

Osnovni materijal: S 355

Vijci: M22 k.v. 10.9

Poprečni presjek:

Profil: HEA 240
\[h = 230 \text{ mm} \]
\[b = 240 \text{ mm} \]
\[t_w = 7,5 \text{ mm} \]
\[t_r = 12 \text{ mm} \]
6.3.1. Raspodjela sila po presjeku nosača

Pojasnice:

Vlačna sila u pojasu od momenta savijanja

\[N_p^{*M} = \frac{M_{sd}}{h'} = \frac{85,82}{(0,23 \cdot 0,012)} = 393,67kN \]

Tlačna sila u pojasu od uzdužne sile

\[N_p^{N} = \frac{A_p \cdot N_{sd}}{A} = \frac{-24 \cdot 1,2}{76,836} \cdot 33,24 = -12,46kN \]

Ukupna sila u vlačnoj pojasnici

\[N_p = N_p^{*M} + N_p^{N} = 393,67 - 12,46 = 381,21kN = F_{w, sd} \]

6.3.2. Kontrola varova

Kontrola vara na pojasnicama i hrptu

- dužina vara pojasnice

\[l_1 = 2 \cdot 240 = 480mm \]

- dužina vara hrpta

\[l_2 = 2 \cdot 216 = 432mm \]

- maksimalna debljina vara s obzirom na debljinu hrpta i pojaseva nosača

\[a_{\text{max}} = 0.7 \cdot t_{\text{min}} = 0.7 \cdot 7,5 = 5,25mm \]

\[a = 6.0mm \]

za pretpostavljeni var a=6.00mm

Uzdužna sila

\[F_{w,Rd} = F_{w,Rk} \cdot \frac{l_1}{\gamma_{M1}} \cdot \frac{196,3}{100} \cdot \frac{480}{100} = 753,79kN > F_{w, sd} = 381,21KN \]

Poprečna sila

\[F_{w,Rd} = F_{w,Rk} \cdot \frac{l_2}{\gamma_{M1}} \cdot \frac{196,3}{100} \cdot \frac{432}{100} = 678,41kN > T_{sd} = 30,2kN \]
6.3.3. Proračun vijaka

Pretpostavljeni vijak M-22 k.v 10,9

uz pretpostavku vijka M-22 udaljenost c_{mn} vijka od ruba pojasnice iznosi:

$$c_{mn} = 2 \cdot d + a\sqrt{2} = 2 \cdot 22 + 6\sqrt{2} = 52,48\text{mm}$$

$c = 55\text{mm}$

ekscentricitet uzdužne sile: $e = \frac{M_{sd}}{N_{sd}} = \frac{85,82}{33,24} = 1,77\text{m}$

ekscentricitet $x_1 = 55 + 230 - 6 = 279\text{mm} = 0,279\text{m}$

ekscentricitet $x_2 = 2440 - \frac{230}{2} + 6 = 2331,0\text{mm} = 2,33\text{m}$

$$N_{sd} \cdot x_2 = F_{t,sd} \cdot x_1 \Rightarrow F_{t,sd} = \frac{N_{sd} \cdot x_2}{x_1} = \frac{33,24 \cdot 2,33}{0,274} = 225,14\text{kN}$$

Otpornost vijka na vlak

$$F_{t,Rd} = \frac{F_{t,sk}}{\gamma_{M1}} = \frac{272,7}{1,25} = 218,16\text{kN} > \frac{F_{t,sd}}{2} = \frac{225,14}{2} = 112,57\text{kN}$$
Otpornost vijaka na posmik

\[F_{v,Rd} = \frac{F_{v,\gamma k}}{\gamma_{M1}} = \frac{117.6}{1.25} = 94.08kN > F_{v,\xi d} = \frac{T_{sd}}{4} = \frac{30.2}{4} = 15.1kN \]

Interakcija uzdužne i odrezne sile na vijak

\[\frac{F_{t,\xi d}}{1.4 \cdot F_{v,Rd}} + \frac{F_{V,\xi d}}{F_{V,Rd}} \leq 1.0 \Rightarrow \frac{225.14}{1.4 \cdot 218.16} + \frac{15.1}{94.08} = 0.9 < 1.0 \]

6.3.4. Proračun ploče

Proračun dimenzija ploče

\[a_{pl}^{\min} = h + 2 \cdot (c + e_i) = 230 + 2 \cdot (55 + 55) = 450mm \]

\[b_{pl}^{\min} = b + 2a\sqrt{2} + 20 = 240 + 2 \cdot 6 \cdot \sqrt{2} + 20 = 276.97mm \]

\[= p_2 + 2 \cdot e_2 = 75 + 2 \cdot 45 = 165mm \]

Odabrane dimenzije ploče 450x280 mm

Proračun debljine ploče \(t_{pl,\xi d} \)

Pritisak po omotaču rupe osnovnog materijala

\[F_{v,\xi d} = \frac{V_{\xi d}}{4} = \frac{30.2}{4} = 75.5kN = F_{b,\xi d} \]

\[F_{b,\xi d} = 7.55kN \Rightarrow t_{pl}^{\min} = 1.0mm \]

\[F_{b,Rk} = \frac{F_{b,Rd}}{1.25} \cdot \frac{t_{pl}^{\min}}{10} = \frac{214.3}{1.25} \cdot \frac{1.0}{10} = F_{b,\xi d} = 17.14kN \]

Savijanje ploče od odgovora betonske podloge
$S = \frac{600 - 230 - 12}{2} = 179.0 \text{mm} = 18 \text{cm}$

$R = F_{r, sd} + N_{sd} = 225.14 - 33.24 = 191.9 \text{kN}$

Naprezanje na betonu

$f_{B, sd} = \frac{R}{3 \cdot S \cdot b_{pl}} = \frac{191.9}{3 \cdot 18 \cdot 28} = 0.25 \text{kN/cm}^2 \leq \frac{f_{ck}}{1.5} = \frac{1.4}{1.5} = 0.93 \text{kN/cm}^2$

Savijanje ploče

$M_{sd} = F_1 \cdot \frac{S}{2} + F_2 \cdot \frac{2 \cdot S}{3} = \frac{2}{3} f_{B, sd} \cdot S \cdot b_{pl} \cdot \frac{S}{2} + \frac{1}{3} f_{B, sd} \cdot S \cdot b_{pl} \cdot \frac{2}{3} \cdot S =

= \frac{2}{3} \cdot 2500 \cdot 0.18 \cdot 0.28 \cdot \frac{0.18}{2} + \frac{1}{3} \cdot 2500 \cdot 0.18 \cdot 0.28 \cdot \frac{2}{3} \cdot 0.18 = 10.08 \text{kNm}$

Vlačno savijanje ploče od vijaka

$M_{sd} = F_{r, sd} \cdot (c + 7 \text{mm}) = 225.14 \cdot 0.062 = 13.96 \text{kNm}$

$M_{sd} \leq \frac{W_{min} \cdot f_y}{1.1} \Rightarrow W_{min} = \frac{1.1 \cdot M_{sd}}{b_{pl} \cdot t^{min}_{pl}} = \frac{1.1 \cdot M_{sd} \cdot b_{pl} \cdot f_y}{6} \Rightarrow t^{min}_{pl} = \frac{1.1 \cdot 1008 \cdot 6}{28 \cdot 35.5} = 2.59 \text{cm}$

$t_{pl} = 30.0 \text{mm} = 3.0 \text{cm}$

Odabrana dimenzija ploče je 450x280x30mm
7. PRORAČUN TEMELJA

SILE

\[A = b_x \cdot b_y = 5,08 \text{ m}^2 \]
\[W_x = \frac{b_x \cdot b_y^2}{6} = 1,86 \text{ m}^2 \]
\[W_y = \frac{b_y \cdot b_x^2}{6} = 1,94 \text{ m}^2 \]
\[N_{sd} = N \cdot \gamma_b \cdot b_x \cdot b_y \cdot d = -215,4 \text{ kN} \]
\[M_{sd,x} = M_x + N \cdot c_y = 0 \text{ kNm} \]
\[M_{sd,y} = M_y - N \cdot c_x + V_x \cdot d = 131,12 \text{ kNm} \]
\[e_x = \frac{M_{sd,y}}{N_{sd}} = -60,87 \text{ cm} \]
\[e_y = \frac{M_{sd,x}}{N_{sd}} = 0 \text{ cm} \]

NAPREZANJA U TLU

\[\sigma_1 = 0,00 \text{ MN/m}^2 \]
\[\sigma_2 = 0,12059 \text{ MN/m}^2 \]
\[\sigma_3 = 0,12059 \text{ MN/m}^2 \]
\[\sigma_4 = 0,00 \text{ MN/m}^2 \]

ARMATURA

\[M_{1,1} = 1,28 \text{ kNm} \]
\[M_{2,2} = 111,91 \text{ kNm} \]
\[M_{3,3} = 7,88 \text{ kNm} \]
\[M_{4,4} = 7,88 \text{ kNm} \]

\[A_{ax} = \frac{M_{2,2}}{0,9 \cdot d \cdot f_{yd}} = 1,97 \text{ cm}^2 \]
\[A_{ax} = \frac{M_{3,3}}{0,9 \cdot d \cdot f_{yd}} = 0,14 \text{ cm}^2 \]

Slika 7.1. Skica dimenzija i naprezanja temelja
8. NACRTI

- Generalni plan pozicija
- Presjek kroz glavni okvir
- Radionički nacrt glavnog okvira
- Detalji spojeva:
 - Vlačni nastavak rešetke
 - Stup – rešetka
 - Stup – temelj