Izvedbeni projekt izmještanja dijela trase podmorskog ispusta Tribunj

Akmadžić, Marinela

Master's thesis / Diplomski rad

2016

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj:

University of Split, Faculty of Civil Engineering, Architecture and Geodesy / Sveučilište u Splitu, Fakultet građevinarstva, arhitekture i geodezije

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:123:692688

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-21

Repository / Repozitorij:

FCEAG Repository - Repository of the Faculty of Civil Engineering, Architecture and Geodesy, University of Split

SVEUČILIŠTE U SPLITU FAKULTET GRAĐEVINARSTVA ARHITEKTURE I GEODEZIJE

DIPLOMSKI RAD

Marinela Akmadžić

Split, 2016.

SVEUČILIŠTE U SPLITU FAKULTET GRAĐEVINARSTVA ARHITEKTURE I GEODEZIJE

Izvedbeni projekt izmještanja dijela trase podmorskog ispusta Tribunj

Diplomski rad

Split, 2016.

Sažetak:

Rad obrađuje problematiku izmještanja dijela trase podmorskog ispusta. Ispust je spojen na crpnu stanicu kojom se vode prepumpava u more. Hidrauličkim proračunom dokazuje se kriterij tečenja za izmještenu trasu. Statičkim proračunom dokazana je statička stabilnost cjevovoda. U konačnici je prikazano tehničko rješenje izvedbe sa pripadajućim isakzom troškova.

Ključne riječi:

Podmorski ispust, crpna stanica, Tribunj, izmještanje

Detailed design of the Tribunj subsea outfall route sequence relocation

Abstract:

This work deals with problem of subsea outfall relocation. System is created by subsea outfall and pumping station which enables the flow by increase of static head. Hydraulic calculation proves the piezometric conditions fullfil the flow criteria through the system. Analysis of the forces acting to the outfall results with minimum number of concrete ballast needed for static stability. Technical solution as well as appropriate cost is elaborated as a final chapter.

Keywords:

Subsea outfall, pumping station, Tribunj, relocation

SVEUČILIŠTE U SPLITU FAKULTET GRAĐEVINARSTVA, ARHITEKTURE I GEODEZIJE

STUDIJ:	DIPLOMSKI SVEUČILIŠNI STUDIJ GRAĐEVINARSTVA
KANDIDAT:	Marinela Akmadžić
BROJ INDEKSA:	
KATEDRA:	Katedra za privrednu hidrotehniku
PREDMET:	Obalno inženjerstvo

ZADATAK ZA DIPLOMSKI RAD

Tema: Izvedbeni projekt izmještanja dijela trase podmorskog ispusta Tribunj

Opis zadatka: Kandidatkinja treba sakupiti i sagledati raspoloživu projektnu dokumentaciju CS Tribunj i pratećeg podmorskog ispusta te potrebne podloge i na osnovu toga:

- Dati jasan pregled podloga i raspoložive projektne dokumentacije
- Utvrditi postojeće stanje
- Definirati trasu na koju će biti izmješten dio postojećeg podmorskog ispusta
- Hidrauličkim proračunom utvrditi radne točke CS Tribunj za postojeće i izmješteno stanje te utvrditi pijezometarska stanja
- Statičkim proračunom, uzevši u obzir sile uzgona, valovanja i strujanja, definirati minimalan broj i raspored sekundarnih opteživača u pogledu osiguranja globalne stabilnosti cjevovoda
- Dati dokaznicu računskih naprezanja u fazi izmještanja i eksploatacije
- Ponuditi tehničko rješenje izvedbe
- Za količinu radova koja odgovara tehničkom rješenju izvedbe prikazati troškovnik radova

U Splitu, 4.3.2016. Voditelj Diplomskog rada:

Doc.dr.sc. Veljko Srzić

Predsjednik Povjerenstva za završne i diplomske ispite: Prof.dr.sc. Ivica Boko

Sadržaj

1.	uv	od		3
	1.1	Opi	is problema	3
	1.2	Utv	vrđivanje postojećeg stanja	4
	1.2	2.1	knjiga 1, CRPNA STANICA I KOPNENI DIO PODMORSKOG ISPUSTA	5
1.2.2			knjiga 2, CRPNA STANICA I PODMORSKI ISPUST TRIBUNJ	7
	1.2	2.3	Troškovnik radova, PRODULJENJE PODMORSKOG ISPUSTA MARIN	Е
	TR	RIBU	NJ 1	0
	1.2	2.4	Uvid iz Vodovod i odvodnja d.o.o. Šibenik1	.1
	1.2	2.5	Podvodne snimke Jadranskog Ronilačkog Saveza1	.1
	1.2	2.6	Snimka Jadranskog Ronilačkog Saveza iz 2008.godine: 1	2
	1.2	2.7	Snimka Jadranskog Ronilačkog Saveza iz 2015.godine: 1	7
	1.2	2.8	Ultrazvučni batimetrijski snimak područja obuhvata1	.9
	1.3	Usv	vojeno postojeće stanje podmorskog ispusta "Tribunj"2	21
	1.4	Izm	nještanje trase podmorskog ispusta "Tribunj"2	26
	1.5	Ko	ntrola rada i osiguranja stabilnosti podmorskog ispusta Tribunj za postojeće stan	je
	i stan	je na	kon izmještanja trase2	28
2.	OI	DRE	DIVANJE PIJEZOMETARSKIH STANJA U SUSTAVU2	29
	2.1	Lin	ijski gubici energije2	29
	2.2	Lol	calni gubici energije	30
	2.3	Pro	račun gubitaka na difuzoru za maksimalni projektni protok	32
	2.4	Od	ređivanje radne točke za postojeće stanje	8
	2.5	Od	ređivanje radne točke za izmještenu trasu podmorskog ispusta4	8
3.	OS	SIGU	RANJE STATIČKE STABILNOSTI IZMJEŠTENE DIONICE PODMORSKO	G
IS	PUST	ГА	5	58
	3.1	Mje	erodavni ulazni parametri5	58
	3.1	.1	Morske struje5	58

Mari	inela Ak	madžić Diplomski rad
	3.1.2	Vjetar74
3.2	2 Pos	stupak kontrole opterećenja ispusta76
	3.2.1	Djelovanje uzgona na cjevovod76
	3.2.2	Djelovanje morskih struja78
	3.2.3	Djelovanje vjetrovnog vala
3.	3 Ko	ntrola težine i brojnosti opteživača90
	3.3.1	Proračun koeficijenata sigurnosti po stacionažama96
3.4	4 Ko	ntrola naprezanja cjevovoda99
	3.4.1	Kontrola naprezanja uslijed promjene temperature i unutrašnjeg tlaka
	3.4.2	Kontrola naprezanja uslijed djelovanja uzgona na cijev dionica 1
	3.4.3	Kontrola naprezanja uslijed djelovanja morskih struja na cjevovod na dionici 1 101
	3.4.4	Kontrola naprezanja uslijed djelovanja valova na cjevovod na dionici 1 101
	3.4.5	Kontrola naprezanja uslijed djelovanja uzgona na cijev dionica 2 102
	3.4.6	Kontrola naprezanja uslijed djelovanja morskih struja na cjevovod na dionici 2 103
	3.4.7	Kontrola naprezanja uslijed djelovanja valova na cjevovod na dionici 2 103
	3.4.8	Kontrola naprezanja uslijed djelovanja uzgona na cijev dionica 3 104
	3.4.9	Kontrola naprezanja uslijed djelovanja morskih struja na cjevovod na dionici 3 104
	3.4.10	Kontrola naprezanja uslijed djelovanja valova na cjevovod na dionici 3 105
	3.4.11	Kontrola dopuštenih naprezanja106
3.:	5 Naj	prezanja u fazi manevra izmještanja108
4.	TEHNI	ČKO RJEŠENJE IZVEDBE110
5.	TROŠK	XOVNIK RADOVA115
6.	LITER	ATURA

1.1 Opis problema

Zadatak diplomskog rada je za postojeće stanje utvrditi trasu na koju ispust treba biti premješten zbog izgradnje novog podmorskog ispusta. Trasa novog podmorskog ispusta se djelomično poklapa sa trasom postojećeg ispusta. Stoga je nužno izvršiti premještanje na tom dijelu. Prvi korak je određivanje točne lokacije na koju će se dio trase cjevovoda premjestiti, zatim je potrebno odrediti način i tehnologiju premještanja cjevovoda i naposljetku konačan broj opteživača koji će osiguravati stabilnost izmještenog ispusta te dokazati hidrauličkim proračunom piezometarska stanja i uvjete tečenja. Planirana izgradnja novog ispusta će za posljedicu imati isključivanje postojećeg sustava disponiranja kanalizacijskog otpada, no dok novi ispust ne bude dovršen i pušten u upotrebu traži se da postojeći sustav normalno funkcionira.

Postojeći podmorski ispust fazno je građen, produžujući cijev i povećavajući dubinu ispuštanja. Lokacija podmorskog ispusta je u Jadranskom moru ispred naselja Tribunj. Novim podmorskim ispustom većeg kapaciteta bi se sve otpadne vode s područja naselja Srima, Vodica i Tribunja objedinjavale sustavom kolektora i crpnih stanica na jedinstven uređaj za pročišćavanje koji bi bio lociran sjeveroistočno od naselja Tribunj. Da bi se došlo do te faze projekta nužno je utvrditi postojeće stanje uz pomoć dostupne dokumentacije. Za potrebe utvrđivanja postojećeg stanja podmorskog ispusta je prikupljena projektna dokumentacija:

-knjiga 1, CRPNA STANICA I KOPNENI DIO PODMORSKOG ISPUSTA

-knjiga 2, CRPNA STANICA I PODMORSKI ISPUST TRIBUNJ

-troškovnik radova, PRODULJENJE PODMORSKOG ISPUSTA MARINE TRIBUNJ

-uvid iz Vodovoda(vodovod i odvodnja d.o.o. Šibenik)

-Podvodne snimke Jadranskog Ronilačkog Saveza iz 2008. i 2015. godine

-izvršen ultrazvučni batimetrijski snimak uzduž trase

Utvrđen je konstantan vanjski promjer cjevovoda $\Phi 250,00 \text{ (mm)}$ u duljini 912,917 (m) uključujući difuzorsku sekciju duljine 30,0 (m) sa dubinom ispuštanja od -36,50 (m n.m.). Također je utvrđeno kako se dio dionice postojećeg ispusta od ubetonirane prirubnice na lokaciji X=5560268,4292, Y= 4845363,2912do prirubničkog spoja na lokaciji X=5560140,7554, Y=4845281,4083 preklapa sa predviđenom dionicom novog podmorskog ispusta vanjskog promjera $\Phi 500,00 \text{ (mm)}$.

3

Batimetrijski uvjeti su složeni zbog iskopanog rova srednje dubine 5 (m) (u odnosu na morsko dno) u duljini od 205,00 (m) te zbog uskog kanala između otoka Lukovik i Logorun. Prioritet je dan novom podmorskom ispustu većeg promjera za koji je odlučeno da će biti vođen po dnu iskopanog kanala.

Postojeći podmorski ispust vanjskog promjera Φ250,00 (mm) nužno je izmjestiti južno od iskopanog rova i postaviti na dubini od -4,15 do -12,24 (m n.m.). Ovim projektom utvrđeno je:

-Da je osiguran dovoljan tlak za postizanje minimalnih brzina tečenja u cijevi ispusta s obzirom na kriterij samoispiranja i evakuacije zraka

-Kako je moguć rad sustava CS "Tribunj"- podmorski ispust s obzirom na postojanje konveksnih lomova nivelete cijevi

-Broj potrebnih opteživača pokazao se kao nedovoljan u pogledu horizontalne stabilnosti cjevovoda te je propisan broj i raspored dodatnih opteživača. Ovo je uzrokovano drastično smanjenom dubinom i posljedično znatnim povećanjem inercijalnih sila uzrokovanih valovima.

-Za propisani raspored i brojnost opteživača cjevovod može podnijeti sve kombinacije djelovanja sila uzgona, valova i morskih struja te nisu premašena maksimalna dozvoljena naprezanja.

1.2 Utvrđivanje postojećeg stanja

Nužno je utvrditi stvarno postojeće stanje i odrediti pogonske parametre postojećeg ispusta kako bi se mogao provesti hidraulički i statički proračun zbog osiguranja stabilnosti i dokaza o osiguranju protočne moći cjevovoda nakon izmještanja.Napravljen je pregled postojeće projektne dokumentacije, kontaktiran je Vodovod i odvodnja d.o.o. Šibenik, obavljen je razgovor sa izvođačem dijela trase navedenog ispusta (završni dio dužine 270 m sa difuzorom duljine 30 m), te su pregledane video snimke stanja izgrađenosti nastale u srpnju 2008. i prosincu 2015. godine. Također je zatražena izrada ultrazvučnog batimetrijskog prikaza dna uz trasu navedenog ispusta. Pregled parametara po svakom navedenom izvoru prikazan je u nastavku. U konačnici je napravljen presjek svih dostupnih parametara te je usvojeno mjerodavno postojeće stanje sa pripadajućim parametrima.

1.2.1 knjiga 1, CRPNA STANICA I KOPNENI DIO PODMORSKOG ISPUSTA

Knjiga 1 je glavni projekt fekalne kanalizacije naselja Tribunj iz 2003.godine.

U njoj se navodi se da su radovi na izgradnji sustava odvodnje otpadnih voda u Nautičkom centru Tribunj započeli 1993.godine, kada je izveden dio podmorskog ispusta u duljini od cca. 630 m od PEHD cijevi promjera Φ250/227 mm. Radovi su iste godine bili prekinuti te do 2003.godine nije dovršena kopnena dionica i završni dio ispusta s difuzorom. U knjizi 1 je razrađeno projektno rješenje CS "Tribunj" i kopneni dio podmorskog ispusta koji će se priključiti na podmorski dio ispusta koji je obrađen u knjizi 2.

Navodi se da je crpna stanica Tribunj projektirana kao podzemni objekt koji se sastoji od crpnog zdenca s dvije uronjive kanalizacijske crpke u mokroj izvedbi. Crpna stanica će biti spojena na kopneni dio podmorskog ispusta duljine 44 (m), koji će biti izveden od PEHD cijevi promjera Φ250/220.4 mm. Za odabrani profil se navodi maksimalna brzina u cjevovodu od 1.13 (m/s). Predviđa se tlačni cjevovod od crpki do izlaza iz zasunske komore od PEHD cijevi i fazonski komadi za radni tlak od 1.0 MPa.

Spoj kopnenog dijela cjevovoda sa postojećim podmorskim dijelom će se izvesti uz pomoć prirubničkog tuljka i slobodne prirubnice na kraju kopnenog dijela ispusta.

Iz hidrauličkog proračuna je prema polaznim parametrima odabrana kanalizacijska crpka FLYGT CP 3140-432 u mokroj izvedbi sa sljedećim tehničkim karakteristikama:

-kapacitet	34.8 (l/s)
-vidina dizanja	13.00 m
-tlačni nastavak	DN 150
-snaga	9.0 Kw

Obzirom da cjelokupni sustav odvodnje naselja Tribunj tada nije bilo planirano izgraditi odjednom, hidraulička provjera je vršena za više faza izgrađenosti (opterećenja) sustava. U I. fazi izgradnje kanalizacijskog sustava, predviđeno je da rade crpke u režimu 1 radna + 1 rezervna. U završnoj fazi izgradnje sustava, kod vršnih dotoka u mjesecima glavne turističke sezone, povremeno bi obje crpke radile u paralelnom režimu. Uz to se naknadno, ovisno o realnoj situaciji u konačnoj fazi izgradnje, može dobaviti i treću crpku istog tipa i karakteristika, kao pričuvnu ili postojeće dvije zamijeniti novim crpkama većeg kapaciteta.

Kod rada jedne crpke kapacitet crpljenja je $Q_1=38.5$ (l/s), a kad rade dvije crpke kapacitet crpljenja bi bio $Q_2=45.0$ (l/s). Tada bi pripadajuće brzine tečenja kroz tlačni cjevovod bile $v_1=1.01$ (m/s) i $v_2=1.18$ (m/s) što su i prihvatljive vrijednosti.

Slika 1.Radne točke CS "Tribunj" za samostalni rad jedne crpke i zajednički rad dviju crpki FLYGT CP 3140-432

Tehnički podaci za hidraulički proračun:

-Podaci o otpadnim vodama: Q_{SR}^{SAT}=19.36 l/s, Q_{MAX}^{SUŠNI}=36.39 l/s,

 $Q_{UK} = Q_{MAX}^{SUŠNI} + Q_{TUDE \ VODE} = 36.39 + 7.75 = 44.14 \text{ l/s}$

-Ulazni podaci za dimenzioniranje crpki:

Maksimalni dotok	$Q_{DOTOK} = 29.41 \text{ l/s}$
Duljina tlačnog cjevovoda	L = 518.0 m
Profil cjevovoda	$\phi = 225/198.2 \text{ mm}$
Pogonska hrapavost	k = 0.25 mm
Geodetska visina	H _{GEO} = 8.74 m
-Korisni volumen crpnog zdenca	$V = 3.4 \text{ m}^3$

Prema dimenzijama crpki i monterskoj shemi crpne stanice odabrane su slijedeće dimenzije crpnog zdenca CS "Tribunj": dužina 3.0 m, širina 2.0 m.

Uključivanje crpke u rad regulirano je razinom vode u crpnom zdencu te "aktivna" visina (uključenje crpke) iznosi 0.60 m (V = 3.6 m^3).

-Relevantne kote crpne stanice:

Kota terena	- 1.32 m
Kota dna dovodne cijevi	- 1.49 m
Kota sredine odvodne cijevi	- 0.26 m
Kota dna zasunske komore	- 0.80 m

Kota dna crpnog zdenca	- 2.85 m
Kota preljeva (sredina cijevi)	-1.00 m
Kota isključenja rada crpke	-2.40 m
Kota uključenja rada crpke	-1.80 m (kada radi 1 crpka)
Kota uključenja rada crpke	-1.60 m (kada rade 2 crpke paralelno)
Kota uključenja alarma	-1.40 m

-Ventili:

Plosnati zasun (radni tlak 1.0 Mpa): DN 80 mm (1 kom) DN 150 mm (3 kom) Nepovratni ventil (radni tlak 1.0 Mpa): DN 80 mm (1 kom) DN 150 mm (2 kom)

-Dimenzije fazonskih komada (od crpke prema ispustu u zidu crpnog zdenca):

	Duljina (mm)	Promjer (mm)
Tuljak i prirubnica	80	90/138
PEHD cijev	1640	180
Lučni komad 90°	350/350	180
PEHD cijev	420	180
PEHD cijev	120	180
Tuljak i sl. prirubnica	80	180/212
Plosnati zasun	210	150
Nepovratni ventil	400	150
Tuljak i sl. prirubnica	80	180/212
Otcjepni komad – T	521/260	180/180
Otcjepni komad – T	411/204.5	180/90
PEHD redukcijski komad	92	250/180
PEHD cijev	200	250
PEHD cijev	1000	250
Tuljak i sl. prirubnica	80	320/250

1.2.2 knjiga 2, CRPNA STANICA I PODMORSKI ISPUST TRIBUNJ

Knjiga 2 spada u glavni projekt fekalne kanalizacije naselja Tribunj.

U knjizi 2 se također navodi kako su radovi na izgradnji sustava odvodnje otpadnih voda u Nautičkom centru Tribunj bili započeti 1993.godine, kada je izveden dio podmorskog ispusta u duljini od cca. 630 (m) od PEHD cijevi promjera Φ250/227 mm. Radovi su iste godine bili prekinuti te do 2003.godine nije dovršena kopnena dionica i završni dio ispusta s difuzorom. Navodi se kako je na mjerodavni vršni dotok otpadne vode od 45 (1/s) izvršena provjera

duljine podmorskog ispusta. Analizom se ustanovilo da duljina podmorskog ispusta od 1500 (m) uz odgovarajući difuzor na kraju cjevovoda, omogućuje kvalitetno razrjeđenje ispuštenih otpadnih voda i sniženje koncentracije karakterističnih pokazatelja zagađenja na zahtijevanu razinu mora na plaži. Tako je ukupna duljina podmorskog dijela ispusta s difuzorom 1545 m. Navodi se ukupna duljina difuzora L_D =44.6 (m) koji bi se izveo od polietilenskih cijevi sljedećih dimenzija:

PEHD Φ250/220.4 mm, L=23.0 m,

PEHD Φ200/176.2 mm, L=11.0 m,

PEHD Φ180/158.6 mm, L=10.6 m.

Na difuzoru su planirani otvori promjera Φ 47-55 mm na međusobnom razmaku 11.0 (m) sa završnim otvorom površine 85 (cm²). Broj otvora na difuzoru je 5, a protok na jednom otvoru difuzora je Q₀ (l/s) = 6.43. Na čeonom otvoru protok je jednak 3* Q₀ (l/s).Brzina istjecanja na otvorima difuzora iznosi V_{IST} (m/s)= 2.20. Dubina mora na mjestu difuzora je H_m=56.00 (m). Stabilnost difuzora i potrebno odizanje od dna bi se osiguralo postavljanjem 8 nosačautega mase 250 (kg), na razmaku 6.0 (m).

Stabilnost cijelog ispusta bi se osiguravala postavljanjem opteživača na jednakim razmacima duž cjevovoda. Navodi se da su opteživači projektirani kao armirano betonski predgotovljeni elementi te se razlikuju dva tipa:

- opteživači za potapanje cjevovoda - osnovni opteživači

-opteživači za sidrenje cjevovoda -dodatni opteživači

Osnovni opteživači su montažni, od dva polukružna segmenta pričvršćena za cijev vijcima na oba kraja. Ovi opteživači bi se postavljali cijelom duljinom novog cjevovoda na razmaku od 3.5 (m), a njihova masa bi bila 150 (kg).

Dodatni opteživači su potkovastog oblika pa svojom masom i trenjem sprječavaju pomicanje i kotrljanje cijevi uslijed svih djelovanja na morskom dnu (utjecaj valova i morskih struja). Dodatni opteživači su projektirani kao montažni armiranobetonski jahači koji se postavljaju na cijev nakon potapanja, da bi se izbjeglo dodatno opterećenje cijevi prilikom potapanja. Masa dodatnih opteživača iznosi 140 (kg).

Prema rezultatima istražnih radova provedenih na trasi planiranog ispusta, posebnu pažnju treba obratiti na podmorski reljef od stacionaže km 0+483.00 do stacionaže km 0+700.00, gdje se dno nakon blagog poniranja do dubine 10 m, počinje uspinjati do dubine 4,6 m na stacionaži km 0+595.00. Kako bi se osigurao konstantan uzdužni pad cjevovoda, na ovoj dionici je potrebno izvršiti iskop rova u duljini od 205 (m) s nagibom nivelete od 0.3%. Planirana širina rova od 1.8 (m) s nagibima pokosa 3:1 omogućuje postavljanje i druge cijevi ispusta, predviđene u kasnijoj fazi izgradnje sustava. Najveća dubina rova (od morskog dna) iznosi 6,2 (m).

Postojeći podmorski ispust je duljine 633 (m). Niveleta prati reljef dna pa nije moguće izvesti kontinuirani uzdužni pad ispusta, zbog čega je priključak novog cjevovoda predviđeno izvesti na mjestu konkavnog loma nivelete (stacionaža km 0+483.00), odakle bi novi cjevovod bio dalje položen u iskopanom rovu do stacionaže km 0+688.00.Od stacionaže 0+688.00 km cijev bi bila slobodno položena po morskom dnu, do početka difuzora na sacionaži 1+500.00 km. Stabilnost cjevovoda i njegovo fiksiranje za dno osigurava se postavljanjem utega osnovnog i dodatnog opterećenja.

U knjizi 2 su date mjerodavne količine za dimenzioniranje određene kao zbroj maksimalnog sušnog dotoka i dotoka "tuđih voda".

Maksimalni sušni dotok Q_{maxu} je jednak:

$$Qmaxu = k \cdot Q_{sr,sat} = 1,88 \cdot 19,36 = 36,39 (l/s)$$

-k predstavlja koeficijent neravnomjernosti po Fedorovu:

$$k = \frac{2,69}{Q_{sr.sat}^{0.121}} = 1,88$$

Dotok "tuđih voda" u kanalizacijski sustav procijenjen je na 40 % srednjeg satnog dotoka fekalnoh otpadnih voda.

$$Q_{tv} = 0.4 \cdot Q_{sr.sat} = 7.75 \ (l/s)$$
$$Q_{maxki} = Q_{maxsu} + Q_{tv} = 36.39 + 7.75 = 44.14 \ (l/s)$$

Za kontrolu hidrodinamičkih parametara podmorskog ispusta vrijednosti ulaznih parametara koji su korišteni u proračunu su:

-koeficijent pogonske hrapavosti (obuhvaća hrapavost stijenki, utjecaj spojeva i odstupanje od idealnog oblika) odabran je sa $K_b=0,025$ mm.

-koeficijent kinematičke viskoznosti odabran je D = $1,31 \cdot 10 \left(\frac{m}{c}\right)$

Kao rezultat hidrauličkog proračuna u knjizi 2 dobivena manometarska visina koja omogućava istjecanje je:

$$H_{man} = \Delta H_{lin} + \Delta H_{dif} = 11,82 + 3,57 = 15,39 \ (m)$$

Proračun istjecanja je izvršen za najnepovoljnije maritimne prilike, odnosno visinu plime od 1,2(m n.m.).

Također je proveden proračun stabilnosti cjevovoda u eksploataciji te je izvršena kontrola naprezanja čime su određene osnovne dimenzije i mase opteživača:

-osnovni opteživači (uteg osnovnog opterećenja cjevovoda):

Postavljaju se na duljini od 1017 (m), na međusobnom razmaku od 3,5 (m), masa jednog komada je 150 (kg), a njihov ukupan broj je 292 komada.

-dodatni opteživači (uteg dopunskog opterećenja cjevovoda):

Dodatni opteživači se postavljaju na duljini od 217 (m) na međusobnom razmaku od 10,5

(m), masa po komadu iznosi 140 (kg), a njihov potreban broj je 22 komada.

-utezi difuzora:

8 utega postavljeno na međusobnom razmaku od 6 (m), mase 250 (kg).

Proračun primarnog razrjeđenja:

-Brzina morske struje za primarno razrjeđenje	V_{s1} (m/s) = 0.05
-Jedinični protok po difuzoru	q' ($m^3/s/m$)= 0.00102
-Relativna gravitacija u moru	a' (m/s ²)= 0.27
-Visina sloja mora za primarno razrjeđenje	h (m) = 10.94
-Protok mora za primarno razrjeđenje	$Q_{m} (m^{3}/s) = 24.07$
-Stupanj primarnog razrjeđenja	S = 534.94

Provedena analiza pokazuje da koncentracija svih mjerodavnih pokazatelja, osim koliformnih bakterija, već kod primarnog razrjeđenja zadovoljava standarde kvalitete mora priobalnog pojasa.

1.2.3 Troškovnik radova, PRODULJENJE PODMORSKOG ISPUSTA MARINE TRIBUNJ

Iz troškovnika su preuzete i navedene samo stavke potrebne za daljnju obradu podataka te za usuglašavanje svih parametara zadanog ispusta. Navode se sljedeće činjenice: -primarni opteživači 54 komada, težina G=130 kg -sekundarni opteživači 54 komada, težina G=210 kg -podmetači difuzora 7 komada, težina G=340 kg -za izradu cjevovoda korišteni su cijevni komadi od tvrdog polietilena (PEHD 225/207,8 mm; d=8,6 mm, SDR 26) duljine 12 m, ukupne duljine 270 m' -difuzor je također izrađen od cijevnih komada od tvrdog polietilena (PEHD 250/11,4 mm) duljine 12 m, ukupne duljine 30 m'. Potapa se do dubine od -30 (m) na postavljene podmetače

1.2.4 Uvid iz Vodovod i odvodnja d.o.o. Šibenik

Prema projektnoj dokumentaciji (Aquaprojekt Split, T.D. 204-02/02 iT.D. 204-01/02) prikupljeni su sljedeći podatci:

- vanjski promjer cijevi ispusta: podmorski dio Ø250/227mm;

-tipcijevi PEHD;

- apsolutna hrapavost: pogonska hrapavost preuzeta iz hidrauličkog proračuna podmorskog dijela 0,25mm;

 - eventualnih prijelaza (veći profil na manji i suprotno) uzduž cijevi, osim spoja kopnenog na podmorski dio, nema;

 Duljina cijevi podmorskog dijela je približno 630 m prema projektu te je nadograđeno naknadno još oko 90 (m) pa je ukupna duljina 720 (m);

-kopeni dio dug je 44 (m)

- dubina na mjestu ispuštanja položen na morsko dno (KT: -15,40 (mn.m.))

- difuzor ne postoji

1.2.5 Podvodne snimke Jadranskog Ronilačkog Saveza

Na raspolaganju su dvije snimke podvodnog cjevovoda. Jedna snimka je iz 2008.godine i prikazuje cijeli novi dio cjevovoda izgrađen iste godine. Snimka prati podmorski ispust od njegovog kraja (dionica difuzora) na dubini od -36.5 m, do mjesta na kojem podmorski ispust izlazi iz iskopanog kanala pod morem i spaja se sa, tada već izvedenim ispustom, na dubini 7,08 (m). Tri metra od toga u smjeru sjeveroistoka ispust prestaje biti položen na morsko dno i postaje ukopan u morsko dno. Stanje sa video snimke dodatno je razjašnjeno troškovnikom izvedenog stanja. Navedene karakteristične točke vidljive su na *Slici 2*.

Slika 2. Pregled karakterističnih točaka duž trase položenog podmorskog ispusta

Druga snimka je iz 2015.godine te prikazuje dionicu cjevovoda izgrađenog 2008.godine od spoja sa postojećim cjevovodom (onim iz 1993.godine) na mjestu zabetonirane prirubnice (*Slika 7.*) pa do prve sljedeće prirubnice (nakon 135 m) (*Slika 8.*). Na toj dionici cjevovod se uglavnom nalazi u umjetno iskopanom rovu.

1.2.6 Snimka Jadranskog Ronilačkog Saveza iz 2008.godine:

Uočeno je postojanje difuzora koji je postavljen na 7 betonskih podmetača (*Slika 3*.). Podmetači difuzorske sekcije postavljeni su ekvidistantno na razmaku od po 5 m.

Slika 3. Detalj betonskog podmetača difuzora

Difuzor je jednolikog poprečnog presjeka, ima tri bočna otvora na razmaku od 11 metara (procijenjeno iz varova koji su vidljivi na snimci, svaki segment je duljine 6 metara) i završni otvor koji se ujedno naziva i čeoni otvor (slijepa prirubnica od tvrdog polietilena), koji je prikazan na *Slici 5*. Iz snimke slobodnom procjenom se zaključuje kako je širina bočnih otvora difuzora 8,5 cm.

Slika 4. Prikaz bočnog otvora na difuzoru (promjer~8,5 cm) i podmetača difuzora

Slika 5. Detalj čeonog otvora na dubini -36,5 m

Difuzor završava na koti od -36.5 (m n.m.), kako je vidljivo na Slici 6.

Slika 6. Dubina na mjestu čeonog otvora (-36,5 (m n.m.))

Na cjevovodu postoje tri prirubnice postavljene na međusobnom razmaku od 135 metara te se duljina novog cjevovoda može procijeniti iz dva segmenta od 135 metara, što daje ukupnu duljinu novog cjevovoda bez difuzora od 270 metara.Prva prirubnica je na mjestu spoja starog cjevovoda sa novim (*Slika 7.*), druga prirubnica se nalazi nakon 135 metara (*Slika8.*),dok je treća smještena neposredno prije difuzora (*Slika 9.*).

Slika 7. Zabetonirana prirubnica na spoju starog i novog cjevovoda

Marinela Akmadžić

Slika 8. Druga prirubnica, 135 metara nakon početka novog dijela cjevovoda

Slika 9. Prirubnica na spoju cjevovoda i difuzora

Pregledom snimke uočeno je postajanje dvaju tipova opteživača:

-opteživači za potapanje cjevovoda (primarni opteživači), 52 komada

-opteživači za sidrenje cjevovoda (sekundarni opteživači), 56 komada

Primarni opteživači (*Slika 10.*) su montažni i sastoje se iz dva polukružna segmenta, koja su pričvršćena za cijev vijcima na oba kraja. Vijci su od nehrđajućeg materijala (inox) kako bi trajno držali opteživač stegnutim za cijev. Postavljeni su cijelom duljinom cjevovoda na približno jednakim razmacima.

Slika 10. Primarni opteživač

Sekundarni opteživači (*Slika 11.*) su sedlastog oblika tako da svojom masom i trenjem na dodirnoj površini sa cijevi spriječe pomicanje i kotrljanje cijevi za sve moguće utjecaje na morskom dnu (valovi i morske struje). Postavljeni su neposredno uz primarne, a razlog je izbjegavanje dodatnog opterećenja cijevi uslijed diferencijalnog slijeganja opteživača različite težine.

Slika 11. Sekundarni opteživač

Na dionici podmorskog ispusta od spoja na difuzor do prirubnice na cca 12.5 m dubine detektirano je 25 primarnih i 27 sekundarnih opteživača. Na idućoj sekciji cjevovoda do spoja sa postojećim ispustom postavljeno je 27 primarnih i 29 sekundarnih opteživača. Ukupna

Marinela Akmadžić

duljina dviju sekcija je 270.0 m, što ukazuje da su primarni opteživači postavljeni na prosječnoj međusobnoj udaljenosti od 5.30 m, a sekundarni od 5.0 m.

Slika 12. Detalj primarnog opteživača na novoj dionici postavljenoj 2008. godine

Slika 13. Detalj sekundarnog opteživača na novoj dionici cjevovoda podmorskog ispusta postavljenoj 2008. godine

Horizontalni i vertikalni lomovi su jasnije vidljivi na snimci kasnijeg datuma.

1.2.7 Snimka Jadranskog Ronilačkog Saveza iz 2015.godine:

Na početku snimke iz 2015.godine uočava se kako je cijeli dio starog cjevovoda zakopan. Tek malo prije zabetonirane prirubnice izlazi na površinu morskog dna. To se jasno vidi na*Slici 16*.Na početku snimke vidi se kako cjevovod ulazi u rov na dubini mora od -9,6 (m) (*Slika 14*.), a snimka završava nedugo nakon izlaska iz rova na dubini od -12,6 (m) (*Slika 15*.). Duljina rova iznosi otprilike 205 (m) u smjeru pružanja.

Diplomski rad

Marinela Akmadžić

Slika 14. Zabilježena dubina na dnu rova na mjestu podzide

Slika 15. Dubina na detalju spoja cjevovoda podmorskog ispusta/završetak snimke

Slika 16. Mjesto izlaska starog cjevovoda (iz 1993.godine) na površinu morskog dna

Na snimci su jasno vidljivi horizontalni i vertikalni lomovi cjevovoda. Prvi vertikalni lom se javlja na samom ulazu cjevovoda u rov te je to ujedno i najveći vertikalni lom na cijeloj dionici (*Slika 17.i 18.*). Od dubine 7,08 (m)podmorski ispust prestaje biti zakopan te je položen po dnu do uključivo difuzorske sekcije. Kako je na početku rova velika dubina, bilo je nemoguće postaviti cjevovod na tom mjestu bez podupore koja bi ublažila lom cjevovoda. Tako je izvedena podzida od pločastog kamena na koju se cjevovod može osloniti, za potrebe spuštanja nivelete podmorskog ispusta sa morskog dna na dno rova.

Marinela Akmadžić

Slika 17. Vertikalni lom cjevovoda na ulazu u rov

Slika 18. Vertikalni i horizontalni lom cjevovoda

Slika 19. Improvizirani zid od pločastog kamena na ulazu cjevovoda u rov

Slika 20. Detalj podzide izvedene na ulasku podmorskog ispusta u rov

1.2.8 Ultrazvučni batimetrijski snimak područja obuhvata

Batimetrijski premjer ultrazvučnom tehnologijom obavljen je zbog upotpunjenja batimetrijske podloge iz faze glavnog projekta novog podmorskog ispusta (ϕ 500/461.8 mm) kojom novonastali rov kote dna cca. - 10 (m n.m.) nije bio obuhvaćen. Snimak je detektirao postojanje opteživača duž rova i od izlaska ispusta iz rova do difuzorske sekcije. Na dubini mora od 7,08 (m) opteživači podmorskog ispusta postaju vidljivi. Trag opteživača nakon izlaska iz rova je vidljiv do dubine od 33 (m).

Slika 21. Ultrazvučni batimetrijski prikaz trase

Batimetrijski premjer ultrazvučnom tehnologijom prikazan na *Slici21.* sadržan je u mjerodavnim situacijama koje su sastavni dio ovog projekta. Uvidom u detalj rova uočava se da su sjeverni i južni pokos rova na mjestima oštećeni djelovanjem mora. Video snimke iz prethodnih poglavlja potvrđuju ovu činjenicu. Po izlasku iz rova u smjeru zapada moguće je rekonstruirati broj opteživača uz napomenu kako nije moguće odijeliti brojčano primarne od sekundarnih (*Slika 23.*)

Slika 22. Detalj rova u ultrazvučnom batimetrijskom prikazu

Slika 23. Detekcija opteživača iz ultrazvučnog batimetrijskog snimka

1.3 Usvojeno postojeće stanje podmorskog ispusta "Tribunj"

Kako se u dostupnim materijalima i dokumentima većina podataka ne podudara, tako je potrebno usuglasiti sve potrebne parametre ispusta i utvrditi stvarno postojeće stanje.U skladu s dostavljenom projektnom dokumentacijom, e-mailovima sa predstavnicima Vodovod i odvodnja d.o.o. Šibenik, Troškovnikom, dostupnim video snimcima te batimetrijskim

Marinela Akmadžić

ultrazvučnim snimkom, usvojena je trasa postojećeg stanja podmorskog ispusta "Tribunj" sa sljedećim parametrima:

-Podmorski ispust izveden je od PEHD cijevi vanjskog promjera 250 (mm), SDR = 26, PN = 6 bara, debljine stijenke 9,615 (mm). Sukladno tome definira se mjerodavni promjer cjevovoda podmorskog ispusta ϕ 250/230,8 (mm). Usvojena apsolutna hrapavost cijevi podmorskog ispusta je 0,25 (mm).

-Trasa postojećeg stanja podmorskog ispusta sa horizontalnim i vertikalnim lomovima nivelete te duljinama sekcija u smjeru pružanja nivelete prikazana je u Tablici B.1.. Koordinate su iskazane u starom položajnom sustavu HKDS.

REDNI	OZNAKA	STACIONAŽA	KOTA DNA CIJEVI	ΔL(m)	ΔH(m)	αh[°]	αν[°]	KOORDINATA X	KOORDINATA Y	DULJINA DIONICE
BROJ		0.000.00	(mn.m.)	0	0.2	08	1 2729	5560772.0257	4045654 1242	CIJEVI(m)
1	51	0+000.00	-1,3	9	0,2	0	1,273	5560773,8257	4845654,1342	9,002
2	L1 C2	0+009.00	-1,5	11	0,5	0	2,603	5560769,5623	4845646,2078	11,011
3	52	0+020.00	-2	14	0,61	0	2,495	5560764,3518	4845636,5204	14,013
4	LZ	0+034.00	-2,61	0	0,19	0	1,814	5560757,7566	4845624,1712	6,003
5	53	0+040.00	-2,8	4	0,05	0	0,716	5560754,9291	4845618,8768	4,000
6	L3	0+044.00	-2,85	16	1,35	34°	4,823	5560753,1907	4845615,4542	16,057
/	54	0+060.00	-4,2	2	0,1	0	2,862	5560738,8596	4845607,8687	2,002
8	L4	0+062.00	-4,3	3	0	0	0	5560737,0811	4845606,9544	3,000
9	L5	0+065.00	-4,3	9,07	1,05	0-	6,604	5560734,4133	4845605,5829	9,131
10	L6	0+0.74.07	-5,35	5,93	0,15	1.	1,449°	5560725,9853	4845601,3832	5,932
11	\$5	0+080.00	-5,5	15	0,5	4°	1,909°	5560721,0390	4845598,8081	15,008
12	L7	0+095.00	-6	5	0,1	0°	1,146°	5560707,2324	4845592,9394	5,001
13	\$6	0+100.00	-6,1	4,05	0,1	0°	1,414°	5560702,6534	4845590,9319	4,051
14	L8	0+104.05	-6,2	3,22	0,1	7°	1,779°	5560698,8790	4845589,3258	3,222
15	L9	0+107.27	-6,3	12,73	0,25	10°	1,125°	5560695,8416	4845588,4356	12,732
16	S7	0+120.00	-6,55	10	0,15	1°	0,859°	5560684,4227	4845582,8077	10,001
17	L10	0+130.00	-6,7	10	0,1	0°	0,573°	5560675,5170	4845578,1806	10,000
18	S8	0+140.00	-6,8	20	0,3	0°	0,859°	5560666,7136	4845573,5152	20,002
19	S9	0+160.00	-7,1	10	0,1	0°	0,573°	5560649,0358	4845564,1614	10,000
20	L11	0+170.00	-7,2	10	0,2	0°	1,146°	5560640,1904	4845559,4968	10,002
21	S10	0+180.00	-7,4	20	0,35	0°	1,003°	5560631,3450	4845554,8321	20,003
22	\$11	0+200.00	-7,75	5	0,15	0°	1,718°	5560613,6542	4845545,5029	5,002
23	L12	0+205.00	-7,9	15	0,35	0°	1,337°	5560609,2409	4845543,1526	15,004
24	S12	0+220.00	-8,25	7	0,15	0°	1,228°	5560595,9586	4845536,1827	7,002
25	L13	0+227.00	-8,4	13	0,13	0°	0,573°	5560589,7921	4845532,8694	13,001
26	\$13	0+240.00	-8,53	5	0,07	0°	0,802°	5560578,2912	4845526,8090	5,000
27	L14	0+245.00	-8,6	9,99	0,02	0°	0,115°	5560573,8700	4845524,4743	9,990
28	L15	0+254.99	-8,62	5,01	0,02	0°	0,229°	5560565,0356	4845519,8058	5,010
29	S14	0+260.00	-8,64	17	0,06	0°	0,202°	5560560,6057	4845517,4697	17,000
30	L16	0+277.00	-8,7	3	0,05	0°	0,955°	5560545,5730	4845509,5312	3,000
31	\$15	0+280.00	-8,75	20	0,25	0°	0,716°	5560542,9202	4845508,1303	20,002
32	L17	0+300.00	-9	15	0,1	0°	0,382°	5560525,2347	4845498,7909	15,000
33	L18	0+315.00	-9,1	5	0,15	0°	1,718°	5560511,9691	4845491,7893	5,002
34	L19	0+320.00	-9,25	20	0,03	0°	0,086°	5560507,5546	4845489,4415	20,000
35	S16	0+340.00	-9,28	2	0,12	0°	3,434°	5560489,8637	4845480,1122	2,004
36	L20	0+342.00	-9,4	18	0,03	0°	0,095°	5560488,0944	4845479,1798	18,000
37	S17	0+360.00	-9,43	5	0,12	0°	1,374°	5560472,1727	4845470,7834	5,001
38	L21	0+365.00	-9,55	15	0,02	0°	0,076°	5560467,7500	4845468,4511	15,000
39	S18	0+380.00	-9,57	5	0,1	0°	1,146°	5560454,4928	4845461,4335	5,001
40	L22	0+385.00	-9,67	15	0,16	0°	0,611°	5560450,0674	4845459,1062	15,001
41	L23	0+400.00	-9,83	20	0,17	0°	0,487°	5560436,8072	4845452,0942	20,001
42	L24	0+420.00	-10	20	0,16	0°	0,458°	5560419,1270	4845442,7449	20,001
43	L25	0+440.00	-10,16	20	0,14	0°	0,401°	5560401,4362	4845433,4156	20,000

 Tablica 1. Koordinate lomnih točaka postojeće trase ispusta sa kutevima horizontalnih i vertikalnih lomova te duljinama dionica u smjeru nivelete cjevovoda

Marinela Akmadžić

```
Diplomski rad
```

44	L26	0+460.00	-10,3	20	0,04	0°	0,115°	5560383,7558	4845424,0666	20,000
45	S19	0+480.00	-10,34	3	0,69	0°	12,953°	5560366,0654	4845414,7367	3,078
46	L27	0+483.00	-9,65	17	0,14	0°	0,472°	5560363,4114	4845413,3379	17,001
47	S20	0+500.00	-9,79	10	0,11	0°	0,630°	5560348,3850	4845405,3877	10,001
48	L28	0+510.00	-9,9	10	0,64	0°	3,662°	5560339,5398	4845400,7232	10,020
49	S21	0+520.00	-9,26	20	0,81	0°	2,319°	5560330,6941	4845396,0584	20,016
50	L29	0+540.00	-8.45	20	0.25	0°	0.716°	5560313.0086	4845386.7191	20.002
51	S22	0+560.00	-8,7	5	0,15	0°	1,718°	5560295,3283	4845377,3701	5,002
52	L30	0+565.00	-8.55	15	1.41	0°	5.370°	5560290.9056	4845375.0378	15.066
53	\$23	0+580.00	-7.14	4.31	1.05	0°	13.692°	5560277.6309	4845368.0533	4.436
54	L31	0+584.31	-8.19	6.29	1.28	0°	11.502°	5560273.8155	4845366.0412	6.419
55	L32	0+590.6	-6.91	4.4	0.27	0°	3.511°	5560268.4292	4845363,2912	4,408
56	133	0+595.00	-6.64	0.69	0.03	2°	2 489°	5560264 2249	4845361 3067	0.691
57	134	0+595.69	-6.61	4 31	0.11	5°	1 462°	5560263 5929	4845361 0293	4 311
58	\$24	0+600.00	-6.5	3 21	0.01	6°	0.178°	5560259 5182	4845359 6763	3 210
59	135	0+603.21	-6.49	5 35	0.46	11°	4 914°	5560256 3898	4845358 9730	5 370
60	136	0+608.56	-6.95	1 44	0.44	1°	16 991°	5560250,5858	4845358,8738	1 506
61	137	0+610.00	-7 39	2 37	0,44	1°	7 /52°	55602/19 6011	4845358 8172	2 390
62	138	0+612.27	-7.7	1.08	0,31	7°	12 627°	5560245,0011	4845358,8172	2,330
63	139	0+614.35	-7,7	5.65	0,48	, 0.	13,027 4 856°	5560245 6172	4845358,7074	5 670
64	£35	0+620.00	-0,10	3,05	0,48	5	4,850	5500245,0172	4845358,5424	3,070
65	140	0+622.00	-8,00	2.06	0,17		3,245 1 112°	5560237,9072	4845350,8210	3,005
66	L40	0+626.06	-8,83	3,00 9 91	0,22	0	4,112	5560237,1178	4845355,7108	9,008
67	142	0+624.97	-9,05	0,81 1 41	0,75	0°	4,800	5500234,2724	4845354,5911	1 4 2 4
69	L42	0+636.39	-9,0	2 7 2	0,2	0 6°	0,075	5500220,0855	4645551,5417	2 721
60	£45	0+030.28	-10	3,72	0,1	0°	1,340	5500224,7710	4845350,8520	5,721
70	520	0+640.00	-10,1	14,08	0,1	0	0,407	5500221,4588	4845349,1340	14,080
70	L44	0+654.08	-10,2	5,92	0,1	9	0,968	5560208,9247	4845342,7097	5,921
/1	527	0+660.00	-10,1	4,81	0	0	0 4628	5560204,1279	4845339,2482	4,810
72	L45	0+664.81	-10,1	0,9	0,15	0 5°	9,462	5560200,3562	4845330,5277	0,912
73	L46	0+665.71	-10,25	1,99	0	5	0 1 4 0 8	5560199,6717	4845336,0160	1,990
74	L47	0+667.70	-10,25	12,3	0,03	0	0,140	5560198,1456	4845334,7400	12,300
75	528	0+680.00	-10,28	14,83	0,02	0 5°	0,077	5560188,6140	4845326,6457	14,830
76	L48	0+694.83	-10,26	5,17	0,04	5	0,443	5560177,3059	4845317,0451	5,170
70	529	0+700.00	-10,3	5,64	0,05	0-	0,508	55601/3,/069	4845313,3388	5,640
/8	L49	0+705.64	-10,35	14,36	0,13	1	0,519	5560169,7940	4845309,2827	14,361
/9	\$30	0+720.00	-10,48	4,//	0,02	3°	0,240°	5560159,5784	4845299,1945	4,770
80	L50	0+724.77	-10,5	7,63	0,25	1	1,877	5560155,9976	4845296,0432	7,634
81	L51	0+732.40	-10,75	7,6	0,75	1°	5,636°	5560150,1685	4845291,1190	7,637
82	\$31	0+740.00	-11,5	5,52	0,3	0°	3,111°	5560144,2861	4845286,3099	5,528
83	L52	0+745.52	-11,8	14,48	2,4	2°	9,411°	5560140,7554	4845283,4083	14,678
84	\$32	0+760.00	-14,2	5,18	1,1	0°	11,989°	5560128,4433	4845274,1147	5,296
85	L53	0+765.18	-15,3	5,42	0,92	7°	9,634°	5560124,2803	4845271,0402	5,498
86	L54	0+770.60	-16,22	9,4	1,49	1°	9,007°	5560119,6055	4845268,3228	9,517
87	\$33	0+780.00	-17,71	6,58	1,24	0°	10,672°	5560111,5732	4845263,4182	6,696
88	L55	0+786.58	-18,95	13,42	2,05	0°	8,685°	5560105,8672	4845260,1410	13,576
89	\$34	0+800.00	-21	12,13	2,55	0°	11,872°	5560094,2745	4845253,3803	12,395
90	L56	0+812.13	-23,55	7,87	1,86	1°	13,297°	5560083,8311	4845247,2100	8,087
91	\$35	0+820.00	-25,41	9,55	1,8	0°	10,674°	5560077,1373	4845243,0723	9,718
92	L57	0+829.55	-27,21	4,9	0,69	4°	8,015°	5560068,7207	4845238,5613	4,948
93	L58	0+834.45	-27,9	5,55	0,5	0°	5,148°	5560064,5595	4845235,9726	5,572
94	\$36	0+840.00	-28,4	11,82	0,94	4°	4,547°	5560059,8510	4845233,0344	11,857
95	L59	0+851.82	-29,34	7,52	0,53	9°	4,031°	5560049,3752	4845227,5602	7,539
96	L60	0+859.34	-29,87	0,66	0,06	0°	5,194°	5560042,2608	4845225,1240	0,663
97	S37	0+860.00	-29,93	20	2,18	0°	6,221°	5560041,6387	4845224,9109	20,118
98	S38	0+880.00	-32,11	20	2,66	4°	7,576°	5560022,7332	4845218,3997	20,176
99	S39	0+900.00	-34,77	4	0,57	0°	8,11°	5560003,3764	845213,3680	4,040
100	L61	0+904.00	-35,34	6	0,89	4°	8,437°	5559998,6449	845212,1381	6,066
101	L62	0+910.00	-36,25			0°		5559993,5085	4845211,2073	0,000
										912,917

Tablica 1. sadrži brojčane podatke koji su prikazani u situaciji postojećeg stanja (Situacija postojećeg stanja, prilog broj 1) i uzdužnom presjeku postojećeg stanja (Uzdužni presjek postojećeg stanja, prilog broj 3). Ukupna duljina cjevovoda od spoja CS "Tribunj" na ispust (stacionaža km 0+000,00) do čeonog otvora difuzora (L-62) na stacionaži km 0+910.00 iznosi 912,917(m). Usvaja se dimenzija promjera cjevovoda ϕ 250/230.8 (mm). Važno je napomenuti kako proračunom definirana duljina dionice trase koja se izmješta iznosi više od Troškovnikom izvedenog produženja, prikazanih 135,0 (m).

Parametri crpne stanice za potrebe hidrauličkog proračuna i definiranja radne točke usvajaju se prema slijedećem:

Maksimalni dotok	$Q_{\text{DOTOK}} = 29.41 \text{ l/s}$
Duljina tlačnog cjevovoda	L = 518.0 m
Profil cjevovoda	$\phi = 225/198.2 \text{ mm}$
Pogonska hrapavost	k = 0.25 mm
Geodetska visina	H _{GEO} = 8.74 m

Kanalizacijska crpka tip FLYGT CP 3140-432 u mokroj izvedbi:

Kapacitet	34.8 l/s
Visina dizanja	13.00 m
Tlačni nastavak	DN 150
Snaga	9 kW

Ukupni kapacitet crpne stanice:

Kod rada jedne crpke Q₁ = 38.5 l/s (H_{MAN} = 13.3 m, v = 1.01 m/s) Kod paralelnog rada obje crpke Q = 45 l/s (H_{MAN} = 16.5 m, v = 1.18 m/s) Korisni volumen crpnog zdenca $V = 3.4 \text{ m}^3$

Prema dimenzijama crpki i monterskoj shemi crpne stanice odabrane su slijedeće dimenzije crpnog zdenca CS "Tribunj": dužina 3.0 m, širina 2.0 m.

Uključivanje crpke u rad regulirano je razinom vode u crpnom zdencu te "aktivna" visina (uključenje crpke) iznosi $0.60 \text{ m} (\text{V} = 3.6 \text{ m}^3)$.

-Relevantne kote crpne stanice:

Kota terena	- 1.32 m
Kota dna dovodne cijevi	- 1.49 m
Kota sredine odvodne cijevi	- 0.26 m
Kota dna zasunske komore	- 0.80 m
Kota dna crpnog zdenca	- 2.85 m
Kota preljeva (sredina cijevi)	- 1.00 m
Kota isključenja rada crpke	-2.40 m
Kota uključenja rada crpke	-1.80 m (kada radi 1 crpka)
Kota uključenja rada crpke	-1.60 m (kada rade 2 crpke paralelno)

Kota uključenja alarma -1.40 m

-Ventili:

Plosnati zasun (radni tlak 1.0 Mpa): DN 80 mm (1 kom) DN 150 mm (3 kom) Nepovratni ventil (radni tlak 1.0 Mpa): DN 80 mm (1 kom) DN 150 mm (2 kom)

-Dimenzije fazonskih komada (od crpke prema ispustu u zidu crpnog zdenca):

Duljina (mm)	Promjer (mm)
80	90/138
1640	180
350/350	180
420	180
120	180
80	180/212
210	150
400	150
80	180/212
521/260	180/180
411/204.5	180/90
92	250/180
200	250
1000	250
80	320/250
	Duljina (mm) 80 1640 350/350 420 120 80 210 400 80 521/260 411/204.5 92 200 1000 80

1.4 Izmještanje trase podmorskog ispusta "Tribunj"

Postojeću trasu podmorskog ispusta je potrebno djelomično izmjestiti zbog oslobađanja dna izvedenog rova da bi se omogućilo nesmetano postavljanje trase novog podmorskog ispusta (ϕ 500/461.8 mm) koji kreće sa planiranog UPOV-a, a završava difuzorskom sekcijom na dubini od -62,5 (m n.m.). Dionica koja se izmješta je duljine 155,883 (m). Potrebno ju je odvojiti na prirubnicama koje se nalaze na stacionaži km 0+590,60 (L-32) i km 0+745,52 (L-52) premavideo snimku iz 2015. godine i Situaciji postojećeg stanja 2 (A.1. list 2).Nova trasa sa pripadajućim koordinatama karakterističnih lomnih točaka, horizontalnim i vertikalnim lomovima nivelete te duljinama pojedinih sekcija definirana je u *Tablici 2*... Koordinate su iskazane u starom položajnom sustavu HKDS.

Marinela Akmadžić

Diplomski rad

Tablica 2. Koordina	te lomnih točaka izmjenjene	e trase ispusta sa kut	tevima horizontalnih i vertikalnih	
	lomova te duljinama dion	ica u smjeru nivelete	e cjevovoda	

REDNI BROJ	OZNAKA TOČKE	STACIONAŽA	KOTA DNA CIJEVI (mn.m.)	ΔL (m)	ΔH (m)	αh [°]	αν[°]	KOORDINATA X	KOORDINATA Y	DULJINA DIONICE CIJEVI (m)
1	\$1	0+000.00	-1,3	9	0,2	0°	1,273°	5560773,8257	4845654,1342	9,002
2	L1	0+009.00	-1,5	11	0,5	0°	2,603°	5560769,5623	4845646,2078	11,011
3	S2	0+020.00	-2	14	0,61	0°	2,495°	5560764,3518	4845636,5204	14,013
4	L2	0+034.00	-2,61	6	0,19	0°	1,814°	5560757,7566	4845624,1712	6,003
5	\$3	0+040.00	-2,8	4	0,05	0°	0,716°	5560754,9291	4845618,8768	4,000
6	L3	0+044.00	-2,85	16	1,35	34°	4,823°	5560753,1907	4845615,4542	16,057
7	S4	0+060.00	-4,2	2	0,1	0°	2,86°	5560738,8596	4845607,8687	2,002
8	L4	0+062.00	-4,3	3	0	0°	0°	5560737,0811	4845606,9544	3,000
9	L5	0+065.00	-4,3	9,07	1,05	0°	6,604°	5560734,4133	4845605,5829	9,131
10	L6	0+0.74.07	-5,35	5,93	0,15	1°	1,449°	5560725,9853	4845601,3832	5,932
11	\$5	0+080.00	-5,5	15	0,5	4°	1,909°	5560721,0390	4845598,8081	15,008
12	L7	0+095.00	-6	5	0,1	0°	1,146°	5560707,2324	4845592,9394	5,001
13	\$6	0+100.00	-6,1	4,05	0,1	0°	1,414°	5560702,6534	4845590,9319	4,051
14	L8	0+104.05	-6,2	3,22	0,1	7°	1,779°	5560698,8790	4845589,3258	3,222
15	L9	0+107.27	-6,3	12,73	0,25	10°	1,125°	5560695,8416	4845588,4356	12,732
16	S7	0+120.00	-6,55	10	0,15	1°	0,859°	5560684,4227	4845582,8077	10,001
17	L10	0+130.00	-6,7	10	0,1	0°	0,573°	5560675,5170	4845578,1806	10,000
18	S8	0+140.00	-6,8	20	0,3	0°	0,859°	5560666,7136	4845573,5152	20,002
19	S9	0+160.00	-7,1	10	0,1	0°	0,573°	5560649,0358	4845564,1614	10,000
20	L11	0+170.00	-7,2	10	0,2	0°	1,146°	5560640,1904	4845559,4968	10,002
21	\$10	0+180.00	-7,4	20	0,35	0°	1,003°	5560631,3450	4845554,8321	20,003
22	\$11	0+200.00	-7,75	5	0,15	0°	1,718°	5560613,6542	4845545,5029	5,002
23	L12	0+205.00	-7,9	15	0,35	0°	1,337°	5560609,2409	4845543,1526	15,004
24	\$12	0+220.00	-8,25	7	0,15	0°	1,228°	5560595,9586	4845536,1827	7,002
25	L13	0+227.00	-8,4	13	0,13	0°	0,573°	5560589,7921	4845532,8694	13,001
26	\$13	0+240.00	-8,53	5	0,07	0°	0,802°	5560578,2912	4845526,8090	5,000
27	L14	0+245.00	-8,6	9,99	0,02	0°	0,115°	5560573,8700	4845524,4743	9,990
28	L15	0+254.99	-8,62	5,01	0,02	0°	0,229°	5560565,0356	4845519,8058	5,010
29	\$14	0+260.00	-8,64	17	0,06	0°	0,202°	5560560,6057	4845517,4697	17,000
30	L16	0+277.00	-8,7	3	0,05	0°	0,955°	5560545,5730	4845509,5312	3,000
31	\$15	0+280.00	-8,75	20	0,25	0°	0,716°	5560542,9202	4845508,1303	20,002
32	L17	0+300.00	-9	15	0,1	0°	0,382°	5560525,2347	4845498,7909	15,000
33	L18	0+315.00	-9,1	5	0,15	0°	1,718°	5560511,9691	4845491,7893	5,002
34	L19	0+320.00	-9,25	20	0,03	0°	0,086°	5560507,5546	4845489,4415	20,000
35	\$16	0+340.00	-9,28	2	0,12	0°	3,434°	5560489,8637	4845480,1122	2,004
36	L20	0+342.00	-9,4	18	0,03	0°	0,095°	5560488,0944	4845479,1798	18,000
37	\$17	0+360.00	-9,43	5	0,12	0°	1,375°	5560472,1727	4845470,7834	5,001
38	L21	0+365.00	-9,55	15	0,02	0°	0,076°	5560467,7500	4845468,4511	15,000
39	S18	0+380.00	-9,57	5	0,1	0°	1,146°	5560454,4928	4845461,4335	5,001
40	L22	0+385.00	-9,67	15	0,16	0°	0,611°	5560450,0674	4845459,1062	15,001
41	L23	0+400.00	-9,83	20	0,17	0°	0,487°	5560436,8072	4845452,0942	20,001
42	L24	0+420.00	-10	20	0,16	0°	0,458°	5560419,1270	4845442,7449	20,001
43	L25	0+440.00	-10,16	20	0,14	0°	0,401°	5560401,4362	4845433,4156	20,000
44	L26	0+460.00	-10,3	20	0,04	0°	0,115°	5560383,7558	4845424,0666	20,000
45	\$19	0+480.00	-10,34	3	0,69	0°	12,953°	5560366,0654	4845414,7367	3,078
46	L27	0+483.00	-9,65	17	0,14	0°	0,4718°	5560363,4114	4845413,3379	17,001
47	S20	0+500.00	-9,79	10	0,11	0°	0,630°	5560348,3850	4845405,3877	10,001
48	L28	0+510.00	-9,9	10	0,64	0°	3,662°	5560339,5398	4845400,7232	10,020
49	\$21	0+520.00	-9,26	20	0,81	0°	2,319°	5560330,6941	4845396,0584	20,016
50	L29	0+540.00	-8,45	20	0,1	0°	0,688°	5560313,0086	4845386,7191	20,000

<u> Iarine</u>	ela Akm	adžić							<u>Diplomsk</u>	<u>i rad</u>
50	L29	0+540.00	-8,45	20	0,1	0°	0,688°	5560313,0086	4845386,7191	20,000
51	S22	0+560.00	-8,69	5	1,75	0°	1,604°	5560295,3283	4845377,3701	5,297
52	L30	0+565.00	-8,55	15	0,34	0°	4,308°	5560290,9056	4845375,0378	15,004
53	S23	0+580.00	-7,42	4,31	1,05	0°	3,982°	5560277,6309	4845368,0533	4,436
54	L31	0+584.31	-7,12	6,29	0,47	0°	1,730°	5560273,8155	4845366,0412	6,308
55	L32	0+590.60	-6,93	9,4	2,21	0°	2,923°	5560268,4292	4845363,2912	9,656
56	S24	0+600.00	-6,45	20	1,12	0°	3,205°	5560224,2996	4845340,4554	20,031
57	S25	0+620.00	-5,33	20	1,18	0°	3,377°	5560206,6346	4845331,1382	20,035
58	S26	0+640.00	-4,15	15,89	0,9	0°	3,242°	5560197,4588	4845324,9243	15,915
59	L33	0+655,89	-5,05	4,11	0,23	8°	3,203°	5560190,8938	4845318,9012	4,116
60	S27	0+660.00	-5,28	11,1	0,07	0°	0,052°	5560189,4026	4845317,4111	11,100
61	L34	0+671.10	-5,27	8,9	0,85	5°	4,881°	5560176,3465	4845305,1810	8,940
62	S28	0+680.00	-4,51	2,11	0,02	0°	0,815°	5560171,7737	4845301,1433	2,110
63	L35	0+682.11	-4,48	17,89	1,47	1°	4,697°	5560163,9359	4845295,8178	17,950
64	S29	0+700.00	-5,95	6,1	0,84	0°	7,841°	5560159,8644	4845294,0917	6,158
65	L36	0+706.10	-6,79	3,38	1,02	7°	16,793°	5560155,9935	4845291,9542	3,531
66	L37	0+709.48	-7,81	10,52	0,93	10°	5,052°	5560147,1103	4845286,5250	10,561
67	S30	0+720.00	-8,74	4,54	0,9	0°	11,213°	5560142,5696	4845283,9469	4,628
68	L38	0+724.54	-9,64	10,41	1,6	2°	8,738°	5560137,9162	4845281,1016	10,532
69	L39	0+734.95	-11,24	5,05	0,53	2°	5,991°	5560126,2468	4845272,5150	5,0777
70	S31	0+740.00	-11,77	5,52	0,47	0°	4,867°	5560121,9782	4845269,7595	5,540
71	L40	0+745.52	-12,24	14,48	2,22	2°	9,719°	5560138,0021	4845281,1023	14,649
72	S32	0+760.00	-14,72	5,18	0,84	0°	6,389°	5560128,4433	4845274,1147	5,248
73	L41	0+765.18	-15,3	5,42	0,92	7°	9,634°	5560124,2803	4845271,0402	5,498
74	L42	0+770.60	-16,22	9,4	1,49	1°	9,007°	5560119,6055	4845268,3228	9,517
75	S33	0+780.00	-17,71	6,58	1,24	0°	10,672°	5560111,5732	4845263,4182	6,696
76	L43	0+786.58	-18,95	13,42	2,05	0°	8,091°	5560105,8672	4845260,1410	14,565
77	S34	0+800.00	-21	12,13	2,55	0°	12,053°	5560094,2745	4845253,3803	12,395
78	L44	0+812.13	-23,59	7,87	1,86	1°	13,021°	5560083,8311	4845247,2100	8,087
79	S35	0+820.00	-25,41	9,55	1,8	0°	10,674°	5560077,1373	4845243,0723	9,718
80	L45	0+829.55	-27,21	4,9	0,69	4°	8,015°	5560068,7207	4845238,5613	5,047
81	L46	0+834,45	-27,9	5,55	0,5	0°	5,147°	5560064,5595	4845235,9726	5,473
82	S36	0+840.00	-28,4	11,82	0,94	4°	4,547°	5560059,8510	4845233,0344	11,857
83	L47	0+851.82	-29,34	7,52	0,53	9°	4,031°	5560049,3752	4845227,5602	7,539
84	L48	0+859,34	-29,87	0,66	0,06	0°	5,194°	5560042,2608	4845225,1240	0,663
85	S37	0+860.00	-29,93	20	2,18	0°	6,221°	5560041,6387	4845224,9109	20,118
86	S38	0+880.00	-32,11	20	2,66	4°	7,576°	5560022,7332	4845218,3997	20,176
87	S39	0+900.00	-34,77	4	0,57	0°	8,11°	5560003,3764	845213,3680	4,040
88	L49	0+904.00	-35.34	6	0.89	4°	8.437°	5559998.6449	845212.1381	6.066

Sve točke i brojčani podaci iz *Tablice 2.* sadržani su u situaciji budućeg stanja (Situacija budućeg stanja, prilog broj 2) i uzdužnom presjeku postojećeg stanja (Uzdužni presjek postojećeg stanja, prilog broj 3). Ukupna duljina cjevovoda od spoja CS "Tribunj" na ispust (stacionaža km 0+000,00) do čeonog otvora difuzora (L-50) na stacionaži km 0+910,00 iznosi km 914,595.

5559993,5085

4845211,2073

0,000 **914,595**

910

-36,23

L50

89

0+910.00

1.5 Kontrola rada i osiguranja stabilnosti podmorskog ispusta Tribunj za postojeće stanje i stanje nakon izmještanja trase

Hidrauličkim proračunom dokazuje se funkcioniranje ispusta za varijante dotoka i predviđen rad crpne stanice "Tribunj". Proračun obuhvaća kontrolu projektnih parametara difuzorske sekcije i definiranje radne točke crpne stanice "Tribunj" i podmorskog ispusta za usvojeno postojeće stanje i stanje nakon izmještanja trase.

Tehnologija izmještanja propisana je u dogovoru sa Izvođačem. Kontrola stabilnosti i otpornosti provedena je za ispust položen na morsko dno pod utjecajem uzgona, morskih struja i mjerodavnog vjetrovnog vala.

Mjerodavni vjetrovni val definiran je na osnovu dostupnih podataka o vjetru na mjernoj postaji Šibenik. Za najkritičniji incidentni smjer definirana je valna visina uključujući efekte uplićavanja.

2. ODREĐIVANJE PIJEZOMETARSKIH STANJA U SUSTAVU

U prethodnom poglavlju su definirani svi parametri difuzorske sekcije te su isti prikazani u *Tablici 3*.

Q _{maksimalno}	44,14	l/s
L _{difuzora}	30,00	m
Δ _{bočnih otvora}	10,00	m
D _{difuzora vanjski}	250,00	mm
D _{difuzora unutarnji}	230,80	mm
N _{otvora}	4	kom
N _{čeoni}	1	kom
N _{bočni}	3	kom
q _{bočni}	7,357	l/s
q _{čeoni}	22,07	l/s
d _{bočni}	7	cm

Tablica 3. Usvojeni parametri difuzorske sekcije

Za usvojeni promjer difuzora, dužine cijevi i broj otvora potrebno je izračunati ukupne gubitke na difuzoru. Pretpostavka je da je difuzor projektiran na maksimalni protok od 44,14 (l/s). Gubici koji se javljaju su linijski gubici (uzduž cijevi difuzora uslijed trenja) i lokalni (na mjestima bočnih otvora).

2.1 Linijski gubici energije

Gubitak energije na trenje uzduž cijevi se računa po Darcy-Weisbachovoj formuli:

$$\Delta H_{LIN} = \lambda \cdot \frac{L}{D} \cdot \frac{V^2}{2 \cdot g} ,$$

gdje je:

L -dužina cijevi (m),

V -srednja brzina u cijevi $(\frac{m}{s})$,

D -promjer cijevi (m),

 λ - koeficijent otpora trenja ovisan o relativnoj hrapavosti i Reynolds-ovom broju.

Hidraulički proračun se izvodi za apsolutnu pogonsku hidrauličku hrapavost $\varepsilon = k = 0,25(mm)$.

Ostale hidrauličke karakteristike cijevi i vode su :

- $v = 1,31 \cdot 10^{-6} \left(\frac{m^2}{s}\right)$ -kinematički koeficijent viskoznosti tekućine

- $\alpha = 1,05$ - Coriollisov koeficijent

Za Reynolds-ov broj Re> 2320 (turbulentno strujanje) koeficijent otpora trenja λ se računa

prema Hagen-Poiseuillovom zakonu: $\frac{1}{\sqrt{\lambda}} = -2.0 \log(\frac{\frac{\varepsilon}{D}}{3.71} + \frac{2.51}{Re \cdot \sqrt{\lambda}})$

Za Reynolds-ov broj Re< 2320 koeficijent otpora trenja se računa prema:

$$\lambda = \frac{64}{\text{Re}}$$
, gdje je:

- λ koeficijent otpora trenja
- D promjer cijevi
- Re Reynolds-ov broj $Re = \frac{v \cdot D}{v}$

v - prosječna brzina tečenja u presjeku cijevi

v - kinematički koeficijent viskoznosti tekućine

 $\varepsilon = k$ - apsolutna pogonska hidraulička hrapavost

2.2 Lokalni gubici energije

Gubitak specifične energije u smjeru cijevi na mjestu bočnog otvora iznosi:

$$\Delta H_{lok} = \xi_{lok} \cdot \frac{v_i^2}{2g} \quad (m)$$

$$\xi_{lok} = o, 4 \cdot \left(1 - \frac{v_{i+1}}{v_i}\right)^2$$

Gdje je: ΔH_{lok} - gubitak specifične energije u smijeru cijevi,

 ξ_{lok} - koeficijent lokalnog gubitka energije,

vi - brzina vode u cijevi uzvodno od bočnog otvora (m/s),

 v_{i+1} - brzina vode u cijevi nizvodno od bočnog otvora (m/s),

U prethodnom poglavlju je zaključeno da postoje tri bočna otvora i jedan čeoni otvor. Kroz svaki bočni otvor istječe jednak protok, dok kroz čeoni otvor istječe trostruko veći protok. U *Tablici 4.* prikazana je količina otvora i protoka kroz iste.

N _{otvora}	4	kom
N _{čeoni}	1	kom
N _{bočni}	3	kom
q _{bočni}	7,357	l/s
q _{čeoni}	22,07	l/s
d _{bočni}	7	cm

Tablica 4. Prikaz broja otvora i odgovarajućih protoka

Slika 24. Skica difuzora sa pripadajućim čeonim i bočnim otvorima

Koeficijent kontrakcije mlaza za čeoni otvor može se odrediti tablično (*Tablica 5.*) ili pomoću konačnih izraza.

A/A0;	KOEFICIJENT KONTRAKCIJE MLAZA-ε					
d/D	β=45°	β=90°	β=135°	β=180°		
0,000	0,746	0,611	0,537	0,500		
0,100	0,747	0,612	0,546	0,513		
0,200	0,747	0,616	0,555	0,524		
0,300	0,748	0,622	0,566	0,544		
0,400	0,749	0,631	0,580	0,564		
0,500	0,752	0,644	0,599	0,586		
0,600	0,758	0,662	0,620	0,613		
0,700	0,768	0,687	0,652	0,646		
0,800	0,789	0,722	0,698	0,691		
0,900	0,829	0,781	0,761	0,760		
1,000	1,000	1,000	1,000	1,000		

Tablica 5. Koeficijent kontrakcije slobodnog mlaza po Von Misesu
Postupak

Pretpostavlja se: $\frac{A}{A_0} = 0.5$ i $v_{\check{c}eoni\ otvor} = 2\left(\frac{m}{s}\right)$; za tu vrijednost omjera površina,

koeficijent kontrakcije slobodnog mlaza po Von Misesu iznosi ε =0,644.

$$Q = v \cdot A \cdot \varepsilon$$

$$3q = 2 \cdot A \cdot 0,644$$

$$A_{\check{c}eoniotvor} = \frac{3q}{2 \cdot 0,644} = \frac{3 \cdot 0,007357}{2 \cdot 0,644} = 0,01712 \ (m^2)$$

se ponavlja: $\frac{A}{A_0} = \frac{0,01712}{0,04184} = 0,409 \Rightarrow \varepsilon = 0,633$

$$Q = v \cdot A \cdot \varepsilon$$

$$3q = 2 \cdot A \cdot 0,633$$

$$A_{\check{c}eoniotvor} = \frac{3q}{2 \cdot 0,644} = \frac{3 \cdot 0,007357}{2 \cdot 0,633} = 0,01744 \ (m^2)$$

Usvojena površina čeonog otvora: $A_{čeoniotvor} = 0,01744 \ (m^2)$

Usvojeni koeficijent kontrakcije slobodnog mlaza: ε=0,633.

Prihvatljivo točne vrijednosti koeficijenta kontrakcije mlaza ε za čeone otvore mogu se dobiti iz aproksimacije tabličnih podataka u obliku:

$$\varepsilon = \frac{1}{1 + a(\beta)\sqrt{1 - c^{b(\beta)}}}$$
$$c = \frac{D}{D_0}$$
$$a(\beta) = 0.3825 \cdot \frac{4\beta}{\pi} \left(1 - 0.0866 \frac{4\beta}{\pi}\right)$$
$$b(\beta) = 4 \left(\frac{4\beta}{\pi}\right)^{-0.9863}$$

2.3 Proračun gubitaka na difuzoru za maksimalni projektni protok

Postupak utvrđivanja gubitaka provodi se tako da se najprije odredi visina čeonog otvora pošto je ista nepoznata. Uz prethodno izračunatu površinu čeonog otvora ($A_{čeoniotvor} = 0,01744 (m^2)$) za traženu brzinu od 2 (m/s), iterativnim postupkom se dolazi do tražene visine čeonog otvora. Zatim je potrebno odrediti linijske i lokalne gubitke u difuzorskim sekcijama prema izrazima navedenim u poglavlju 2.1 i 2.2. Iterativni postupak određivanja vidine čeonog otvora (y) prikazan je u *Tablici 6*.

-Određivanje visine y za čeoni otvor, za izračunatu površinu A

Slika 25. Poprečni presjek čeonog otvora difuzora

Pretpostavlja se da je difuzor projektiran na maksimalni protok od $Q_{MAX} = 44,14$ (l/s). Na *Slici* 25. prikazan je poprečni presjek zadnjeg otvora na difuzoru. Otvoreni dio čeonog otvora ima površinu A te je potrebno naći visinu otvorenog dijela ovog otvora-y prema slijedećim izrazima:

$$\cos(\alpha) = \left(\frac{r-y}{r}\right) \Rightarrow \alpha = \arccos\left(\frac{r-y}{r}\right)$$
$$A = r^2 \left[\alpha - \sin(\alpha)\left(1 - \frac{y}{r}\right)\right]$$

 α - kut u radijanima

y (m)	r (m)	cos (α)	α (rad)	α(°)	A(m)	A/A
0,00	0,1154	1,000	0,000	0	0,000	0,000
0,01	0,1154	0,913	0,419	24,028	0,001	0,015
0,02	0,1154	0,827	0,598	34,240	0,002	0,042
0,03	0,1154	0,740	0,738	42,266	0,003	0,076
0,04	0,1154	0,653	0,859	49,203	0,005	0,116
0,05	0,1154	0,567	0,968	55,478	0,007	0,160
0,06	0,1154	0,480	1,070	61,310	0,009	0,207
0,07	0,1154	0,393	1,166	66,833	0,011	0,256
0,08	0,1154	0,307	1,259	72,136	0,013	0,308
0,09	0,1154	0,220	1,349	77,285	0,015	0,361
0,10	0,1154	0,133	1,437	82,331	0,017	0,415
0,11	0,1154	0,047	1,524	87,318	0,020	0,470
0,12	0,1154	-0,040	1,611	92,284	0,022	0,525
0,13	0,1154	-0,127	1,698	97,268	0,024	0,580
0,14	0,1154	-0,213	1,786	102,308	0,027	0,635
0,15	0,1154	-0,300	1,875	107,447	0,029	0,688
0,16	0,1154	-0,386	1,968	112,736	0,031	0,740
0,17	0,1154	-0,473	2,064	118,238	0,033	0,790
0,18	0,1154	-0,560	2,165	124,041	0,035	0,837
0,19	0,1154	-0,646	2,274	130,274	0,037	0,881
0,20	0,1154	-0,733	2,394	137,147	0,039	0,921
0,21	0,1154	-0,820	2,532	145,061	0,040	0,955
0,22	0,1154	-0,906	2,706	155,014	0,041	0,983
0,23	0,1154	-0,993	3,024	173,250	0,042	1,000

Tablica 6. Iterativni postupak definiranja visine otvora na čeonom otvoru

Površina čeonog otvora iznosi 0,0174 (m²). Iz prethodne *Tablice 6*. usvojeno je da ta površina odgovara upravo vrijednosti y-a od 0,100 (m) odnosno y=100 (mm).

Linijski gubici u difuzorskim sekcijama definirani u *Tablici 7*. su prikazani u *Tablici 8*., dok su lokalni gubici prikazani u *Tablici 9*. sve definirane vrijednosti gubitaka manje su od pola metra vodnog stupca.

Profil	Duljina sekcije	Udaljenost od čeonog otvora (m)	Promjer (m)	Visina otvora (m)	Naziv di	onice
Čeoni otvor	0	0	0,2308	0,1003	1	
Bočni otvor 1	10	10	0,2308	0,2308	DI	50
Bočni otvor 2	10	20	0,2308	0,2308	50	02
Bočni otvor 3	10	30	0,2308	0,2308	23	

Tablica 7. Definiranje parametara difuzorske sekcije

Dionica	L(m)	e (m)	D (m)	A(m ²)	∩ (m²/s)	q(m³/s)	v (m/s)	Re	λ_{pret}	λ_{izr}	$D\mathbf{H}_{\mathrm{LIN}}(\mathbf{m}\mathbf{v.s.})$
D1	10	0,00025	0,2308	0,04183709	0,00000131	0,02207	0,52752232	92940,57	0,022594	0,022594	0,013884812
D2	10	0,00025	0,2308	0,04183709	0,00000131	0,02943	0,70344277	123934,8	0,022037	0,022037	0,024081366
D3	10	0,00025	0,2308	0,04183709	0,00000131	0,03678	0,8791242	154886,9	0,021681	0,021681	0,03700299
Cijev isp	usta		0,2308	0,04183709	0,00000131	0,04414	1,05504465				

Tablica 8. Llinijski gubici uzduž difuzora

Tablica 9. Lokalni gubitci na bočnim otvorima

LOKALNI GUBIT		
otvor	$ imes_{lok}$	□H _{LOK} (m v.s.)
bočni otvor 1	0,02501	0,0006306
bočni otvor 2	0,01598	0,0006296
bočni otvor 3	0,01118	0,00063492

Za vodu koja se iz CS-,,Tribunj" podmorskim ispustom ispušta u more, te za gustoću mora usvojene su vrijednosti gustoće prikazane u *Tablici 10*. Da bi se izbjegao proračun sa dva medija različite gustoće, definirana je ekvivalentna razina mora u odnosu na morsku razinu bez utjecaja plime i oseke. Svođenjem na jedinstvenu gustoću definira se ekvivalentna razina mora u iznosu 1,022 m n.m. koja je ujedno referentan rubni uvjet tlaka na najnizvodnijoj točki podmorskog ispusta (difuzora).

Tablica 10. Prikaz potrebnih podataka za proračun ekvivalentne razine mora

ρ _{mora}	1028,00	kg/m ³
ρ_{vode}	1000,00	kg/m ³
α	1,05	
g	9,81	m/s ²
Dubina	36,50	m

- izračun ekvivalentne razine mora:

$$\rho_{vode} \cdot g \cdot h_{vode} = \rho_{mora} \cdot g \cdot h_{mora}$$

$$\rho_{vode} \cdot h_{vode} = \rho_{mora} \cdot h_{mora}$$

$$h_{vode} = \frac{\rho_{mora}}{\rho_{vode}} \cdot h_{mora} = \frac{1028}{1000} \cdot 36{,}5 = 37{,}522 m$$

$$h_{vode} - h_{mora} = h_{ekvivalentno}$$

$$37{,}522 - 36{,}5 = 1{,}022 mn.m.$$

stacionaža	h_ekvivalentno	linija energije	piezometarska
difuzorske sekcije	(m n.m.)	(m n.m.)	linija (m n.m.)
0,00	1,022	1,3129	1,2533
0,01	1,022	1,3122	1,2709
10,00	1,022	1,2752	1,2339
10,01	1,022	1,2746	1,2481
20,00	1,022	1,2505	1,2240
20,01	1,022	1,2500	1,2351
30,00	1,022	1,2360	1,2211
30,01	1,022	1,0220	1,0220

Tablica 11. Linija energije i piezometarska linija uzduž difuzora

Slika 26. Grafički prikaz ekvivalentne visine, linije energije i piezometarske linije

Stacionaža difuzorske sekcije (m)	Q _{cijev} (m ³ /s)	V _{cijev} (m/s)	A _{otvor} (m ²)	V _{otvor} (m/s)	⊖ _{bočni}	_{Qotvor} (m ³ /S)
0,00	0,044	1,055	0,0057	2,1302	0,6037	0,00729
0,01	0,037	0,879				
10,00	0,037	0,879	0,0057	2,0388	0,6326	0,00731
10,01	0,029	0,703				
20,00	0,029	0,703	0,0057	1,9910	0,6308	0,00712
20,01	0,022	0,528				
30,00	0,022	0,528				
30,01	0,022		0,017	2	0,63	0,02142
					Q _{UKUPNO}	0.0/315

Slika 27. Grafički prikaz brzina tečenja kroz difuzorsku sekciju

Rezultati proračuna pokazuju da je difuzor dimenzioniran na protok 43,15 (l/s) za kombinaciju pretpostavljenih pogonskih parametara difuzora. Odstupanje od maksimalnog protoka je 0,99 (l/s) što je zanemarivo. Za nastavak proračuna usvaja se kao mjerodavan, protok od 44,14 (l/s) te se za taj protok računaju ukupni gubici. Difuzor je relativno male duljine (30 m) pa je eventualna razlika linijskih gubitaka smanjena za vrijednost protoka, stoga se uzimajući veći protok u iznosu

od 44,14 (l/s) ide na stranu sigurnosti u pogledu definiranja brzine tečenja iz razloga povećanih gubitaka.

Ukupni gubitak energije na difuzoru iznosi: $\Delta H_{DIFUZORA} = \Sigma(\Delta L_{LIN} + \Delta L_{LOK})$

$$\Delta H_{DIFUZORA} = 0,291m$$

$$\xi_{difuzora} = \frac{\Delta H_{DIF}}{\frac{v^2}{2g}} = \frac{0,291}{\frac{1,055^2}{2g}} = 5,128$$

2.4 Određivanje radne točke za postojeće stanje

Od CS "Tribunj" do kraja difuzorske sekcije podmorskog ispusta, cijev podmorskog ispusta je ukupne dužine 914,595 (m). Unutar crpne stanice, od usisa do spoja na cijev podmorskog ispusta, ukupna dužina tlačnog cjevovoda sa fazonskim komadima dužine je 5, 00 (m) (poglavlje 1.3). Vanjski promjer cijevi podmorskog ispusta je 250 (mm), dok je unutrašnji 230,8 (mm). Promjer tlačnog cjevovoda crpne stanice sa fazonskim komadima je 180 (mm). Razina vode u usisnom bazenu oscilira od -2,40 (m n.m.) kada su obe crpke isključene, preko - 1,80 (m n.m.) kada u pogon ulazi jedna crpka, do -1,60 (m n.m.) kada se uključuje druga crpka. U crpnoj stanici instalirane su dvije crpke tipa FLYGT CP 3140-432 u mokroj izvedbi, u paralelnom spoju. Proračuni su provedeni s apsolutnom pogonskom hrapavošću cijevi od ε =0,25 (mm) i kinematičkim koeficijentom viskoznošću vode u iznosu 0,00000131 (m²/s) (usvojeno postojeće stanje podmorskog ispusta "Tribunj", poglavlje 1.3)

ρ _{mora}	1028,00	kg/m ³
ρ_{vode}	1000,00	kg/m ³
α	1,05	
g	9,81	m/s ²
dubina	36,50	m
h _{plima}	1,00	m n.m.
h _{oseka}	-0,40	m n.m.

Tablica 13. Usvojeni parametri za potrebe definiranja radne točke

Potrebno je odrediti statičku visinu za slučaj plime i oseke kada radi jedna i kada rade obje crpke. Prvi korak je određivanje ekvivalentne razine mora za slučaj plime i za slučaj oseke.

Za vrijeme oseke ekvivalentna razina mora iznosi:

$$\rho_{vode} \cdot g \cdot h_{vode} = \rho_{mora} \cdot g \cdot (h_{mora} + 1)$$

$$\rho_{vode} \cdot h_{vode} = \rho_{mora} \cdot (h_{mora} + 1)$$

$$h_{vode} = \frac{\rho_{mora}}{\rho_{vode}} \cdot (h_{mora} + 1) = \frac{1028}{1000} \cdot 37,5 = 38,55 m$$

$$h_{vode} - h_{mora} = h_{ekvivalentno}$$

$$38,55 - 36,5 = 2,05 mn.m.$$

Za vrijeme pline ekvivalentna razina mora je jednaka:

$$\rho_{vode} \cdot g \cdot h_{vode} = \rho_{mora} \cdot g \cdot (h_{mora} - 0,40)$$

$$\rho_{vode} \cdot h_{vode} = \rho_{mora} \cdot (h_{mora} - 0,40)$$

$$h_{vode} = \frac{\rho_{mora}}{\rho_{vode}} \cdot (h_{mora} - 0,40) = \frac{1028}{1000} \cdot 36,1 = 37,1108 m$$

$$h_{vode} - h_{mora} = h_{ekvivalentno}$$

$$37,1108 - 36,5 = 0,6108 mn.m.$$

U prvom poglavlju ovog rada su definirane kote uključenja i isključenja crpki:

-1,8 (m n.m.)-kota uključenja jedne crpke

-1,6 (m n.m.)- kota uključenja obe crpke

-2,4 (m n.m.)-kota isključenja crpke/i

Statička visina se dobije kao razlika ekvivalentne visine (prilikom plime ili prilikom oseke) i kote paljenja ili gašenja crpke/crpki. Vrijednosti statičkih visina su prikazani u *Tablici 14*.

Tablica 14. Definiranje mjerodavnih statičkih visina s obzirom na oscilacije morske razine uslijed djelovanja plime i oseke i varijacija vode i usisnom bazenu CS "Tribunj"

RAD CRPKI	1 CRPKA		2 0	СКРКЕ
RAZINA MORA (m n.m)	1,00	-0,40	1,00	-0,40
HSTATIČKO (m) (kote uključenja)	3,85	2,41	3,65	2,21
HEKVIVALENTNO (m n.m.)	2,05	0,61	2,05	0,61
HUSIS (m n.m.)	-1,80	-1,80	-1,60	-1,60
HSTATIČKO (m) (kote ISključenja)	4,45	3,01	4,45	3,01

Slika 28. Skica crpne stanice i podmorskog ispusta sa karakterističnim kotama te prikaz linije energije i piezometarske linije za karakteristični slučaj

Na osnovu prikazanih podataka u *Tablici 8.* i *Tablici 14.* za potrebnu manometarsku visinu definiraju se radne točke crpne stanice. U *Tablicama15. i 16.* su prikazani protoci, visine dizanja, snaga i koeficijent korisnog učinka za izvedbu crpne stanice u samostalnom radu jedne crpke i za slučaj paralelnog spoja dviju crpki.

Tablica 15. Parametri FLYGT CP 3140-432 u slučaju rada samo jedne crpke

Q (I/s)	H (m)	P (Kw)	η
0,00	21,00	8,00	0,000
8,00	20,00	8,00	0,196
12,00	19,00	8,00	0,280
16,00	18,00	8,00	0,353
21,00	17,00	8,00	0,438
26,00	16,00	8,03	0,508
30,00	15,00	8,06	0,548
35,00	14,00	8,10	0,593
41,00	13,00	8,18	0,639
45,00	12,00	8,30	0,638
50,00	11,00	8,40	0,642
55 <i>,</i> 00	10,00	8,40	0,642
62,00	9,00	8,50	0,644
67,00	8,00	8,45	0,622
70,00	7,00	8,40	0,572
78,00	6,00	8,10	0,567
84,00	5,00	7,90	0,522
88,00	4,00	7,70	0,448

Tablica 16. Parametri crpke FLYGT CP 3140-432 u slučaju rada dviju paralelno spojenih crpki

Q (I/s)	H (m)	P (Kw)	η
0,00	21,00	16,00	0,000
16,00	20,00	16,00	0,196
24,00	19,00	16,00	0,280
36,00	18,00	16,00	0,353
42,00	17,00	16,00	0,438
52,00	16,00	16,06	0,508
60,00	15,00	16,12	0,548
70,00	14,00	16,20	0,593
82,00	13,00	16,36	0,639
90,00	12,00	16,60	0,638
100,00	11,00	16,80	0,642
110,00	10,00	16,80	0,642
124,00	9,00	17,00	0,644
134,00	8,00	16,90	0,622
140,00	7,00	16,80	0,572
156,00	6,00	16,20	0,567
168,00	5,00	15,80	0,522
176,00	4,00	15,40	0,448

Gubitak energije na trenje uzduž cijevi se računa po Darcy-Weisbachovoj formuli:

$$\Delta H_{LIN} = \lambda \cdot \frac{L}{D} \cdot \frac{v^2}{2 \cdot g} ,$$

gdje je:

L-dužina cijevi (m),

v-srednja brzina u cijevi $\left(\frac{m}{s}\right)$,

D-promjer cijevi (m),

 λ - koeficijent otpora trenja ovisan o relativnoj hrapavosti i Reynolds-ovom broju. Hidraulički proračun se izvodi za apsolutnu pogonsku hidrauličku hrapavost

 $\varepsilon = k = 0,25 \ (mm).$

Ostale hidrauličke karakteristike cijevi i vode su :

 $v = 1,31 \cdot 10^{-6} \left(\frac{m^2}{c}\right)$ -kinematički koeficijent viskoznosti tekućine

 $\alpha = 1,05$ - Coriollisov koeficijent

Za Reynolds-ov broj Re> 2320 (turbulentno strujanje) koeficijent otpora trenja λ se računa

prema Hagen-Poiseuillovom zakonu: $\frac{1}{\sqrt{\lambda}} = -2.0 \log(\frac{\frac{\varepsilon}{D}}{3.71} + \frac{2.51}{Re \cdot \sqrt{\lambda}})$

Za Reynolds-ov broj Re< 2320 koeficijent otpora trenja se računa prema Hagen poiseuillovom zakonu: $\lambda = \frac{64}{Re}$, gdje je:

 λ - koeficijent otpora trenja

D - promjer cijevi (mm)

Re – Reynolds-ov broj $Re = \frac{v \cdot D}{v}$

v - prosječna brzina tečenja u presjeku cijevi (*m/s*)

v - kinematički koeficijent viskoznosti tekućine

 $\varepsilon = k$ - apsolutna pogonska hidraulička hrapavost (*mm*)

Identičan je postupak izračuna gubitaka u samoj crpnoj stanici, od usisa do spoja tlačnog cjevovoda na cijev podmorskog ispusta u zidu crpne stanice "Tribunj". Ukupna duljina fazonskih komada tlačnog cjevovoda usvojena je u iznosu 5,00 (m), sa unutarnjim promjerom 180 (mm) i apsolutnom hrapavošću ε =0,25 (mm).

Tablica 17. Proračun linijskih gubitaka uslijed trenja u cijevi podmorskog ispusta u ovisnosti o protoku

Q (m ³ /s)	L (m)	ε(m)	D (m)	A (m²)	ν (m²/s)	v(m/s)	Re	$\lambda_{pretp.}$	λ _{izr.}	ΔH _{lin} (m v.s.)
0,044	912,917	0,00025	0,2308	0,041816	1,31E-06	1,052	185385	0,021433	0,021433	5,023
0,043	912,917	0,00025	0,2308	0,041816	1,31E-06	1,028	181171,7	0,021463	0,021463	4,804
0,042	912,917	0,00025	0,2308	0,041816	1,31E-06	1,004	176958,5	0,021494	0,021494	4,590
0,041	912,917	0,00025	0,2308	0,041816	1,31E-06	0,980	172745,2	0,021526	0,021526	4,381
0,040	912,917	0,00025	0,2308	0,041816	1,31E-06	0,957	168531,9	0,021559	0,021559	4,176
0,039	912,917	0,00025	0,2308	0,041816	1,31E-06	0,933	164318,6	0,021594	0,021594	3,976
0,038	912,917	0,00025	0,2308	0,041816	1,31E-06	0,909	160105,3	0,021631	0,021631	3,781
0,037	912,917	0,00025	0,2308	0,041816	1,31E-06	0,885	155892	0,021669	0,021669	3,591
0,036	912,917	0,00025	0,2308	0,041816	1,31E-06	0,861	151678,7	0,02171	0,02171	3,406
0,035	912,917	0,00025	0,2308	0,041816	1,31E-06	0,837	147465,4	0,021752	0,021752	3,226
0,034	912,917	0,00025	0,2308	0,041816	1,31E-06	0,813	143252,1	0,021796	0,021796	3,050
0,033	912,917	0,00025	0,2308	0,041816	1,31E-06	0,789	139038,8	0,021843	0,021843	2,880
0,032	912,917	0,00025	0,2308	0,041816	1,31E-06	0,765	134825,5	0,021893	0,021893	2,714
0,031	912,917	0,00025	0,2308	0,041816	1,31E-06	0,741	130612,2	0,021945	0,021945	2,553
0,030	912,917	0,00025	0,2308	0,041816	1,31E-06	0,717	126398,9	0,022	0,022	2,397
0,029	912,917	0,00025	0,2308	0,041816	1,31E-06	0,694	122185,6	0,022059	0,022059	2,246
0,028	912,917	0,00025	0,2308	0,041816	1,31E-06	0,670	117972,3	0,022121	0,022121	2,100
0,027	912,917	0,00025	0,2308	0,041816	1,31E-06	0,646	113759	0,022187	0,022187	1,958
0,026	912,917	0,00025	0,2308	0,041816	1,31E-06	0,622	109545,7	0,022258	0,022258	1,822
0,025	912,917	0,00025	0,2308	0,041816	1,31E-06	0,598	105332,4	0,022333	0,022333	1,690
0,024	912,917	0,00025	0,2308	0,041816	1,31E-06	0,574	101119,1	0,022414	0,022414	1,563
0,023	912,917	0,00025	0,2308	0,041816	1,31E-06	0,550	96905,82	0,022501	0,022501	1,441
0,022	912,917	0,00025	0,2308	0,041816	1,31E-06	0,526	92692,52	0,022594	0,022594	1,324
0,021	912,917	0,00025	0,2308	0,041816	1,31E-06	0,502	88479,23	0,022695	0,022695	1,212
0,020	912,917	0,00025	0,2308	0,041816	1,31E-06	0,478	84265,93	0,022804	0,022804	1,104
0,019	912,917	0,00025	0,2308	0,041816	1,31E-06	0,454	80052,63	0,022923	0,022923	1,002
0,018	912,917	0,00025	0,2308	0,041816	1,31E-06	0,430	75839,34	0,023053	0,023053	0,904
0,017	912,917	0,00025	0,2308	0,041816	1,31E-06	0,407	71626,04	0,023195	0,023195	0,812
0,016	912,917	0,00025	0,2308	0,041816	1,31E-06	0,383	67412,74	0,023352	0,023352	0,724
0,015	912,917	0,00025	0,2308	0,041816	1,31E-06	0,359	63199,45	0,023526	0,023526	0,641
0,014	912,917	0,00025	0,2308	0,041816	1,31E-06	0,335	58986,15	0,02372	0,02372	0,563
0,013	912,917	0,00025	0,2308	0,041816	1,31E-06	0,311	54772,85	0,023938	0,023938	0,490
0,012	912,917	0,00025	0,2308	0,041816	1,31E-06	0,287	50559,56	0,024185	0,024185	0,422
0,011	912,917	0,00025	0,2308	0,041816	1,31E-06	0,263	46346,26	0,024467	0,024467	0,358
0,010	912,917	0,00025	0,2308	0,041816	1,31E-06	0,239	42132,96	0,024793	0,024793	0,300
0,009	912,917	0,00025	0,2308	0,041816	1,31E-06	0,215	37919,67	0,025174	0,025174	0,247
0,008	912,917	0,00025	0,2308	0,041816	1,31E-06	0,191	33706,37	0,025628	0,025628	0,199
0,007	912,917	0,00025	0,2308	0,041816	1,31E-06	0,167	29493,08	0,02618	0,02618	0,155
0,006	912,917	0,00025	0,2308	0,041816	1,31E-06	0,143	25279,78	0,026868	0,026868	0,117
0,005	912,917	0,00025	0,2308	0,041816	1,31E-06	0,120	21066,48	0,027754	0,027754	0,084
0,004	912,917	0,00025	0,2308	0,041816	1,31E-06	0,096	16853,19	0,028955	0,028955	0,056
0,003	912,917	0,00025	0,2308	0,041816	1,31E-06	0,072	12639,89	0,030706	0,030706	0,033
0,002	912,917	0,00025	0,2308	0,041816	1,31E-06	0,048	8426,593	0,033608	0,033608	0,016
0,001	912,917	0,00025	0,2308	0,041816	1,31E-06	0,024	4213,296	0,039983	0,039983	0,005

Ukupan gubitak na difuzoru definiran je u prethodnom poglavlju kao i koeficijent gubitka na difuzoru u iznosu od 5,128. Ukupan gubitak u ovisnosti o protoku (brzini) definiran je u *Tablici 18.* prema izrazu :

$$\Delta H_{DIF} = \xi_{DIF} \cdot \frac{v_{ispust}^2}{2g}$$

Q (m ³ /s)	Dfaz	A _{faz} (m ²)	v (m/s)	Re	L _{faz} (m)	$\lambda_{pretp.}$	λ _{izr.}	∆h _{lin} ^{faz} (m v.s.)	Δh _{dif} (m v.s.)	Brzinska visina (m)
0,044	0,18	0,025447	1,729091	237585	5,00	0,022257	0,022257	0,0989	0,3038	0,0593
0,043	0,18	0,025447	1,689793	232185,3	5,00	0,022278	0,022278	0,0946	0,2902	0,0566
0,042	0,18	0,025447	1,650496	226785,7	5,00	0,022299	0,022299	0,0903	0,2769	0,0540
0,041	0,18	0,025447	1,611198	221386	5,00	0,022322	0,022322	0,0861	0,2638	0,0514
0,04	0,18	0,025447	1,571901	215986,4	5,00	0,022346	0,022346	0,0821	0,2511	0,0490
0,039	0,18	0,025447	1,532603	210586,7	5,00	0,022371	0,022371	0,0781	0,2387	0,0466
0,038	0,18	0,025447	1,493306	205187	5,00	0,022397	0,022397	0,0742	0,2266	0,0442
0,037	0,18	0,025447	1,454008	199787,4	5,00	0,022425	0,022425	0,0705	0,2149	0,0419
0,036	0,18	0,025447	1,414711	194387,7	5,00	0,022454	0,022454	0,0668	0,2034	0,0397
0,035	0,18	0,025447	1,375413	188988,1	5,00	0,022484	0,022484	0,0632	0,1923	0,0375
0,034	0,18	0,025447	1,336116	183588,4	5,00	0,022516	0,022516	0,0598	0,1814	0,0354
0,033	0,18	0,025447	1,296818	178188,7	5,00	0,02255	0,02255	0,0564	0,1709	0,0333
0,032	0,18	0,025447	1,257521	172789,1	5,00	0,022585	0,022585	0,0531	0,1607	0,0313
0,031	0,18	0,025447	1,218223	167389,4	5,00	0,022623	0,022623	0,0499	0,1508	0,0294
0,03	0,18	0,025447	1,178926	161989,8	5,00	0,022663	0,022663	0,0468	0,1413	0,0275
0,029	0,18	0,025447	1,139628	156590,1	5,00	0,022706	0,022706	0,0438	0,1320	0,0257
0,028	0,18	0,025447	1,10033	151190,4	5,00	0,022752	0,022752	0,0409	0,1230	0,0240
0,027	0,18	0,025447	1,061033	145790,8	5,00	0,0228	0,0228	0,0382	0,1144	0,0223
0,026	0,18	0,025447	1,021735	140391,1	5,00	0,022852	0,022852	0,0355	0,1061	0,0207
0,025	0,18	0,025447	0,982438	134991,5	5,00	0,022907	0,022907	0,0329	0,0981	0,0191
0,024	0,18	0,025447	0,94314	129591,8	5,00	0,022967	0,022967	0,0304	0,0904	0,0176
0,023	0,18	0,025447	0,903843	124192,2	5,00	0,023031	0,023031	0,0280	0,0830	0,0162
0,022	0,18	0,025447	0,864545	118792,5	5,00	0,023101	0,023101	0,0257	0,0760	0,0148
0,021	0,18	0,025447	0,825248	113392,8	5,00	0,023176	0,023176	0,0235	0,0692	0,0135
0,02	0,18	0,025447	0,78595	107993,2	5,00	0,023258	0,023258	0,0214	0,0628	0,0122
0,019	0,18	0,025447	0,746653	102593,5	5,00	0,023347	0,023347	0,0193	0,0567	0,0110
0,018	0,18	0,025447	0,707355	97193,86	5,00	0,023446	0,023446	0,0174	0,0509	0,0099
0,017	0,18	0,025447	0,668058	91794,2	5,00	0,023554	0,023554	0,0156	0,0454	0,0088
0,016	0,18	0,025447	0,62876	86394,54	5,00	0,023674	0,023674	0,0139	0,0402	0,0078
0,015	0,18	0,025447	0,589463	80994,88	5,00	0,023807	0,023807	0,0123	0,0353	0,0069
0,014	0,18	0,025447	0,550165	75595,22	5,00	0,023957	0,023957	0,0108	0,0308	0,0060
0,013	0,18	0,025447	0,510868	70195,57	5,00	0,024126	0,024126	0,0094	0,0265	0,0052
0,012	0,18	0,025447	0,47157	64795,91	5,00	0,024319	0,024319	0,0080	0,0226	0,0044
0,011	0,18	0,025447	0,432273	59396,25	5,00	0,024542	0,024542	0,0068	0,0190	0,0037
0,01	0,18	0,025447	0,392975	53996,59	5,00	0,0248	0,0248	0,0057	0,0157	0,0031
0,009	0,18	0,025447	0,353678	48596,93	5,00	0,025106	0,025106	0,0047	0,0127	0,0025
0,008	0,18	0,025447	0,31438	43197,27	5,00	0,025472	0,025472	0,0037	0,0100	0,0020
0,007	0,18	0,025447	0,275083	37797,61	5,00	0,025922	0,025922	0,0029	0,0077	0,0015
0,006	0,18	0,025447	0,235785	32397,95	5,00	0,026488	0,026488	0,0022	0,0057	0,0011
0,005	0,18	0,025447	0,196488	26998,29	5,00	0,027226	0,027226	0,0016	0,0039	0,0008
0,004	0,18	0,025447	0,15719	21598,64	5,00	0,028238	0,028238	0,0010	0,0025	0,0005
0,003	0,18	0,025447	0,117893	16198,98	5,00	0,029732	0,029732	0,0006	0,0014	0,0003
0,002	0,18	0,025447	0,078595	10799,32	5,00	0,032244	0,032244	0,0003	0,0006	0,0001
0,001	0,18	0,025447	0,039298	5399,659	5,00	0,037841	0,037841	0,0001	0,0002	0,0000

Tablica 18. Proračun linijskih gubitaka uslijed trenja u tlačnoj cijevi crpne stanice i gubitak na difuzoru u ovisnosti o protoku

Ukupna visina dizanja crpne stanice definirana je kao suma usisne visine, statičke visine, gubitaka u tlačnom dijelu sustava i brzinske visine u istom. Kako su crpke potopnog tipa, usisni dio sustava se zanemaruje, a predtlak koji se javlja u usisnom bazenu uzima se u obzir kroz kombinacije statičkih visina u ovisnosti o međusobnom odnosu ekvivalentne razine mora pod utjecajem plime i oseke i razina vode u usisnom bazenu. Ukupna potrebna visina dizanja crpke definirana je prema:

$$H = H_{STATIČKO} + \sum \Delta H + \frac{\alpha \cdot v_{ispust}^2}{2g}$$

Marinela Akmadžić

$$\sum \Delta H = \lambda_{TLA\check{C}NI} \cdot \frac{L_{TLA\check{C}NI}}{D_{TLA\check{C}NI}} \cdot \frac{\alpha V_{ISPUST}^2}{2g} + \lambda_{ISPUST} \cdot \frac{L_{ISPUST}}{D_{ISPUST}} \cdot \frac{\alpha V_{ISPUST}^2}{2g} + \xi_{DIFUZOR} \cdot \frac{\alpha V_{ISPUST}^2}{2g}$$

Potrebne visine dizanja za varijabilne vrijednosti protoka u sustavu izračunate su prema prethodnim izrazima i prikazane u *Tablicama 17, 18 i 19.*. Svi ulazni parametri su također prikazani u istim tablicama.

Q (m ³ /s)	H _{OSEKA} ^{1CRPKA} (m)	H _{PLIMA} ^{1CRPKA} (m)	H _{OSEKA} ^{2CRPKE} (m)	H _{PLIMA} ^{2CRPKE} (m)	H _{DNO} PLIMA (m)	H _{DNO} ^{OSEKA} (m)
0,044	7,896	9,335	7,896	9,135	9,935	8,496
0,043	7,656	9,096	7,656	8,896	9,696	8,256
0,042	7,422	8,861	7,422	8,661	9,461	8,022
0,041	7,193	8,632	7,193	8,432	9,232	7,793
0,040	6,969	8,408	6,969	8,208	9,008	7,569
0,039	6,750	8,190	6,750	7,990	8,790	7,350
0,038	6,537	7,976	6,537	7,776	8,576	7,137
0,037	6,329	7,769	6,329	7,569	8,369	6,929
0,036	6,127	7,566	6,127	7,366	8,166	6,727
0,035	5,930	7,369	5,930	7,169	7,969	6,530
0,034	5,738	7,177	5,738	6,977	7,777	6,338
0,033	5,551	6,990	5,551	6,790	7,590	6,151
0,032	5,370	6,809	5,370	6,609	7,409	5,970
0,031	5,194	6,633	5,194	6,433	7,233	5,794
0,030	5,023	6,463	5,023	6,263	7,063	5,623
0,029	4,858	6,297	4,858	6,097	6,897	5,458
0,028	4,698	6,138	4,698	5,938	6,738	5,298
0,027	4,544	5,983	4,544	5,783	6,583	5,144
0,026	4,395	5,834	4,395	5,634	6,434	4,995
0,025	4,251	5,690	4,251	5,490	6,290	4,851
0,024	4,112	5,551	4,112	5,351	6,151	4,712
0,023	3,979	5,418	3,979	5,218	6,018	4,579
0,022	3,851	5,290	3,851	5,090	5,890	4,451
0,021	3,729	5,168	3,729	4,968	5,768	4,329
0,020	3,611	5,051	3,611	4,851	5,651	4,211
0,019	3,500	4,939	3,500	4,739	5,539	4,100
0,018	3,393	4,832	3,393	4,632	5,432	3,993
0,017	3,292	4,731	3,292	4,531	5,331	3,892
0,016	3,196	4,636	3,196	4,436	5,236	3,796
0,015	3,106	4,545	3,106	4,345	5,145	3,706
0,014	3,021	4,460	3,021	4,260	5,060	3,621
0,013	2,942	4,381	2,942	4,181	4,981	3,542
0,012	2,867	4,307	2,867	4,107	4,907	3,467
0,011	2,799	4,238	2,799	4,038	4,838	3,399
0,010	2,735	4,175	2,735	3,975	4,775	3,335
0,009	2,678	4,117	2,678	3,917	4,717	3,278
0,008	2,625	4,064	2,625	3,864	4,664	3,225
0,007	2,578	4,017	2,578	3,817	4,617	3,178
0,006	2,537	3,976	2,537	3,776	4,576	3,137
0,005	2,501	3,940	2,501	3,740	4,540	3,101
0,004	2,471	3,910	2,471	3,710	4,510	3,071
0,003	2,447	3,886	2,447	3,686	4,486	3,047
0,002	2,428	3,867	2,428	3,667	4,467	3,028
0,001	2,416	3,855	2,416	3,655	4,455	3,016

Radne točke CS "Tribunj" i pripadajućeg podmorskog ispusta definirane su prema prethodnim izrazima za sve moguće ekstremne kombinacije koje se mogu javiti u fazi rada sustava. U obzir su uzete varijacije morske razine (plima +1,00 m n.m. i oseka -0,40 m n.m.). Statičke visine dizanja crpki,osim ekvivalentnim razinama morske razine definirane su i razinama vodnog lica u usisnom bazenu CS "Tribunj". S obzirom na pogonske parametre iznesene u prethodnom poglavlju, usvajaju se sljedeće mjerodavne razine za koje je nužno definirati radne točke:

-kota uključenja jedne crpke -1,80 m n.m.

-kota uključenja druge crpke (paralelan rad) -1,60 m n.m.

-kota isključenja rada crpke/crpki -2,40 m n.m.

Slika 29. Radne točke CS "Tribunj" za postojeću trasu podmorskog ispusta u ovisnosti o razini mora i varijaciji razine vode u usisnom bazenu

T 11: 00 D 1	v1 · 1	. /. 1 .		1	
Tablica 20. Radne to	ocke sa pripada	aiucim brzinama	tecenia u ci	ievi nodmorsk	tog ispusta
					· · · · · · · · · · · · · · · · · · ·

Radna točka	1.	2.	3.	4.	5.	6.	7.	8.
Q (I/s)	53,05	50,229	48,99	51,89	65,99	62,93	61,11	64,357
H (m)	10,321	10,946	11,197	10,553	14,357	14,689	14,866	14,539
Vispust (m/s)	1,269	1,201	1,171	1,241	1,578	1,505	1,461	1,539
Hbazen(m n.m.)	-1,8	-1,8	-2,4	-2,4	-1,6	-1,6	-2,4	-2,4
Hmore (m n.m.)	-0,4	1	1	-0,4	-0,4	1	1	-0,4

Analizom rezultata prikazanih na *Slici 29.* i u *Tablici 20.* za najkritičniju kombinaciju u pogledu brzine tečenja u cijevi podmorskog ispusta usvojena je: kota vodnog lica u usisnom bazenu -2,40 m n.m.; plima u moru +1,00 m n.m. i rad jedne crpke.

Za najkritičniju kombinaciju brzina u cijevi podmorskog ispusta iznosi 1,171 (m/s), za protok 48,99 (l/s) i visinu dizanja crpke 11,197 (m). Bez obzira na kombinaciju parametara ne dolazi do prekida vodnog stupca, tečenje se odvija nesmetano sa napomenom da je za svaku radnu točku osigurana brzina u cijevi nužna za samoispiranje cijevi ispusta(V_{ISPIRANJE}=0,95 (m/s)) (prema *Marine Wastewater Outfalls and Treatment Systems; Roberts et.Al;* str. 395.).

2.5 Određivanje radne točke za izmještenu trasu podmorskog ispusta

Za izmještenu trasu gubici se računaju na isti način kao i za postojeću trasu samo se razlikuje duljina cijevi. Ukupna duljina cijevi u izmještenom stanju iznosi 914,595 m (prema uzdužnom presjeku budućeg stanja). Pregledom uzdužnih presjeka izmještene trase (Uzdužni presjek budućeg stanja, prilog broj 3) uočeno je postojanje više konveksnih lomova duž cijevi podmorskog ispusta. Učestalost rada crpne stanice "Tribunj" i ispusta je nepoznata pa je moguće zadržavanje zraka u cjevovodu uslijed kemijskih i bioloških procesa otpadne vode. U tom slučaju zrak se mora evakuirati kako bi se spriječilo njegovo nakupljanje na mjestima konveksnih lomova nivelete cjevovoda. Evakuacija zraka će se postići izvođenjem otvora uzduž cjevovoda na mjestima sa najvišim kotama nivelete. Postoji i drugi način evakuacije zarobljenog zraka, a to je osiguranje minimalnih brzina tečenja u cijevi ispusta nužnih za evakuaciju zraka.

Ovim projektom je predviđena izvedba četiriju kružnih otvora promjera 1,5 cm na postojećem cjevovodu i to na kruni cjevovoda:

-Dva otvora promjera 1,5 cm okruglog oblika, na lokaciji S-26 (Uzdužni presjek budućeg stanja 1, prilog D.1.), kota nivelete -4,15 (m n.m.), stacionaža 0+640,00 m.

-Dva otvora promjera 1,5 cm okruglog oblika, na lokaciji L-35 (Uzdužni presjek budućeg stanja 2, prilog D.2.), kota nivelete -4,48 (m n.m.), stacionaža 0+701,216 m.

Kroz navedene otvore, sukladno piezometarskim stanjima, osim evakuacije zraka dolazi i do određenog istjecanja. Kako ne bi došlo do onečišćenja mora, otvori trebaju biti malih dimenzija.

Kontroliranjem piezometarskih stanja na mjestima otvora određuje se protok kroz otvore za evakuaciju zraka prema *Tablicama 21, 22, 23 i 24*. Tako je utvrđen i izlazni protok na bočnim otvorima reda veličine 10^{-7} (l/s) što se smatra zanemarivim. Proračun je napravljen za

kombinaciju plime u moru i razine vode u usisnom bazenu -2,40 (m n.m.) (tablica s prethodne strane). U kojoj je prikazano kako se radi o kombinacijama za koje radne točke rezultiraju najmanjim i najvećim brzinama u cijevi podmorskog ispusta.

Proračun se provodio prema sljedećim izrazima:

-Brzinska visina=
$$\frac{\alpha \cdot v_{ispust}^2}{2g}$$

-Gubici na tlačnom cjevovodu uslijed trenja: $-\Delta H_{LIN}^{FAZ} = \lambda_{tlačni} \cdot \frac{L_{tlačni}}{D_{tlačni}} \cdot \frac{\alpha \cdot v_{tlačni}^2}{2g}$

-Gubici duž cijevi podmorskog ispusta uslijed trenja: $\Delta H_{LIN} = \lambda_{ispust} \cdot \frac{L_{ispust}}{D_{ispust}} \cdot \frac{\alpha \cdot v_{ispust}^2}{2g}$

- energije: L.E.=Η - H_{EKVIVALENTNO} - H_{USIS} –ΔH_{LIN}^{FAZ} - ΔH_{LIN}

-Piezometarska linija: P.P.= L.E. – brzinska visina

-Koeficijent kontrakcije mlaza za bočne otvore (prema "Ocean Disposal of Wastewater"

I.R.Wood, R.G.Bell, D.L.Wilkinson 1993, str 130.): $\varepsilon = 0,63 - 0,58 \left(\frac{v^2}{2gE}\right)$

-E-razlika kote piezometarske linije i ekvivalentne razine mora

-Brzina vode u kontrahiranom presjeku bočnog otvora: $V_{bočno} = \sqrt{2gE}$

-Protok vode kroz bočni otvor: $Q_{bočno} = V_{bočno} \cdot \varepsilon \cdot \mathbf{A}$

-A predstavlja površinu poprečnog presjeka bočnog otvora.

Tablica 21. Piezometarska stanja i izlazni protok na otvoru za evakuaciju zraka S-26 za rad jedne crpke, razinu vode u usisnom bazenu od -2,40 m n.m. i plimu u moru

H (m)	11,197
Hekvivalentno (m n.m.)	2,05
Husis (m n.m.)	-2,4
brzinska visina (m)	0,0735
ΔHlin faz (m v.s.)	0,122171
ΔHlin (m v.s.)	4,344
linija energije u S-26 (m n.m)	2,280829
pijezometarska linija u S-26 (m n.m.)	2,207329
Aotvora (m2)	0,000177
Vbočno (m/s)	6,689534
Qbočno (l/s)	4,39652E-07

Tablica 22.	Piezometarska stanja i izlazni protok na otvoru za evakuaciju zraka S-26 za rad dvije
	crpke, razinu vode u usisnom bazenu od -2,40 m n.m. i plimu u moru

H (m)	14,866
Hekvivalentno (m n.m.)	2,05
Husis (m n.m.)	-2,4
brzinska visina (m)	0,1143
ΔHlin faz (m v.s.)	0,188614
ΔHlin (m v.s.)	6,658
linija energije u S-26 (m n.m)	3,569386
pijezometarska linija u S-26 (m n.m.)	3,455086
Aotvora (m2)	0,000177
Vbočno (m/s)	8,368474
Qbočno (I/s)	9,05047E-07

Tablica 23.	Piezometarska stanja i izlazni protok na otvoru za evakuaciju zraka L-35 za rad jedn	e
	crpke, razinu vode u usisnom bazenu od -2,40 m n.m. i plimu u moru	

H (m)	11,197
Hekvivalentno (m n.m.)	2,05
Husis (m n.m.)	-2,4
brzinska visina (m)	0,0735
ΔHlin faz (m v.s.)	0,122171
ΔHlin (m v.s.)	4,751395
linija energije u L-35 (m n.m)	1,873434
pijezometarska linija u L-35 (m n.m.)	1,799934
Aotvora (m2)	0,000177
Vbočno (m/s)	6,062737
Qbočno (l/s)	6,55683E-07

Tablica 24. Piezometarska stanja i izlazni protok na otvoru za evakuaciju zraka L-35 za rad dvaju crpke, razinu vode u usisnom bazenu od -2,40 m n.m. i plimu u moru

H (m)	14,866
Hekvivalentno (m n.m.)	2,05
Husis (m n.m.)	-2,4
brzinska visina (m)	0,1143
ΔHlin faz (m v.s.)	0,188614
ΔHlin (m v.s.)	7,2829
linija energije u L-35 (m n.m)	7,2829038
pijezometarska linija u L-35 (m n.m.)	7,1686038
Aotvora (m2)	0,0001766
Vbočno (m/s)	10,02132758
Qbočno (l/s)	1,0838E-06

Otvori za evakuaciju zraka, u hidrauličkom smislu se tretiraju kao bočni otvori sa gubitkom specifične energije:

$$\Delta H_{BO\check{C}NO} = \xi_{BO\check{C}NO} \cdot \frac{\alpha \cdot V_{ISPUST}^2}{2g}$$
$$\xi_{BO\check{C}NO} = 0.4 \cdot \left[1 - \frac{V_C^{i+1}}{V_C^i}\right]^2$$

Gdje je:

 $\Delta H_{BOČNO}$ - gubitak specifične energije u smjeru cijevi,

 $\xi_{BO\check{C}NO}$ -koeficijent lokalnog gubitka energije,

 V_C^i - brzina vode u cijevi uzvodno od bočnog otvora (m/s),

 V_C^{i+1} - brzina vode u cijevi nizvodno od bočnog otvora (m/s)

Uslijed bočnog istjecanja kroz četiri otvora za evakuaciju zraka dolazi do smanjenja protoka, a time i brzine uzduž cijevi ispusta. Ako se oduzme protok koji istječe kroz otvor za evakuaciju zraka od vrijednosti protoka u cijevi, utvrđuje se promjena brzine u nizvodnoj dionici od 0,0001 m/s. Proračun gubitaka i definiranje radne točke sustava za izmješteno stanje cjevovoda računa se prema izrazima:

$$H = H_{STATIČKO} + \sum \Delta H + \frac{\alpha \cdot v_{ispust}^2}{2g}$$

$$\begin{split} \sum \Delta H &= \lambda_{TLA\check{C}NI} \cdot \frac{L_{TLA\check{C}NI}}{D_{TLA\check{C}NI}} \cdot \frac{\alpha V_{ISPUST}^2}{2g} + \lambda_{ISPUST} \cdot \frac{L_{ISPUST}}{D_{ISPUST}} \cdot \frac{\alpha V_{ISPUST}^2}{2g} + 4\xi_{BO\check{C}NO} \\ &\cdot \frac{\alpha V_{ISPUST}^2}{2g} + \xi_{DIFUZOR} \cdot \frac{\alpha V_{ISPUST}^2}{2g} \end{split}$$

Q (m ³ /s)	L (m)	ε(m)	D (m)	A (m²)	v (m²/s)	v(m/s)	Re	λpretp.	λizr.	ΔH _{lin} (m v.s.)
0,044	914,595	0,00025	0,2308	0,04184	0,00000131	1,051701	185292	0,021434	0,021434	5,027739
0,043	914,595	0,00025	0,2308	0,04184	0,00000131	1,027798	181080,8	0,021464	0,021464	4,808405
0,042	914,595	0,00025	0,2308	0,04184	0,00000131	1,003896	176869,6	0,021494	0,021494	4,593926
0,041	914,595	0,00025	0,2308	0,04184	0,00000131	0,979994	172658,4	0,021526	0,021526	4,384303
0,04	914,595	0,00025	0,2308	0,04184	0,00000131	0,956091	168447,3	0,02156	0,02156	4,179536
0,039	914,595	0,00025	0,2308	0,04184	0,00000131	0,932189	164236,1	0,021595	0,021595	3,979627
0,038	914,595	0,00025	0,2308	0,04184	0,00000131	0,908287	160024,9	0,021632	0,021632	3,784575
0,037	914,595	0,00025	0,2308	0,04184	0,00000131	0,884385	155813,7	0,02167	0,02167	3,594381
0,036	914,595	0,00025	0,2308	0,04184	0,00000131	0,860482	151602,5	0,02171	0,02171	3,409046
0,035	914,595	0,00025	0,2308	0,04184	0,00000131	0,83658	147391,4	0,021753	0,021753	3,228570
0,034	914,595	0,00025	0,2308	0,04184	0,00000131	0,812678	143180,2	0,021797	0,021797	3,052955
0,033	914,595	0,00025	0,2308	0,04184	0,00000131	0,788775	138969	0,021844	0,021844	2,882200
0,032	914,595	0,00025	0,2308	0,04184	0,00000131	0,764873	134757,8	0,021894	0,021894	2,716306
0,031	914,595	0,00025	0,2308	0,04184	0,00000131	0,740971	130546,6	0,021946	0,021946	2,555275
0,03	914,595	0,00025	0,2308	0,04184	0,00000131	0,717069	126335,4	0,022001	0,022001	2,399108
0,029	914,595	0,00025	0,2308	0,04184	0,00000131	0,693166	122124,3	0,02206	0,02206	2,247805
0,028	914,595	0,00025	0,2308	0,04184	0,00000131	0,669264	117913,1	0,022122	0,022122	2,101368
0,027	914,595	0,00025	0,2308	0,04184	0,00000131	0,645362	113701,9	0,022188	0,022188	1,959798
0,026	914,595	0,00025	0,2308	0,04184	0,00000131	0,621459	109490,7	0,022259	0,022259	1,823097
0,025	914,595	0,00025	0,2308	0,04184	0,00000131	0,597557	105279,5	0,022334	0,022334	1,691267
0,024	914,595	0,00025	0,2308	0,04184	0,00000131	0,573655	101068,4	0,022415	0,022415	1,564308
0,023	914,595	0,00025	0,2308	0,04184	0,00000131	0,549753	96857,18	0,022502	0,022502	1,442224
0,022	914,595	0,00025	0,2308	0,04184	0,00000131	0,52585	92646	0,022595	0,022595	1,325016
0,021	914,595	0,00025	0,2308	0,04184	0,00000131	0,501948	88434,81	0,022696	0,022696	1,212688
0,02	914,595	0,00025	0,2308	0,04184	0,00000131	0,478046	84223,63	0,022805	0,022805	1,105242
0,019	914,595	0,00025	0,2308	0,04184	0,00000131	0,454143	80012,45	0,022924	0,022924	1,002682
0,018	914,595	0,00025	0,2308	0,04184	0,00000131	0,430241	75801,27	0,023054	0,023054	0,905011
0,017	914,595	0,00025	0,2308	0,04184	0,00000131	0,406339	71590,09	0,023196	0,023196	0,812234
0,016	914,595	0,00025	0,2308	0,04184	0,00000131	0,382437	67378,91	0,023353	0,023353	0,724357
0,015	914,595	0,00025	0,2308	0,04184	0,00000131	0,358534	63167,72	0,023527	0,023527	0,641386
0,014	914,595	0,00025	0,2308	0,04184	0,00000131	0,334632	58956,54	0,023721	0,023721	0,563326
0,013	914,595	0,00025	0,2308	0,04184	0,00000131	0,31073	54745,36	0,023939	0,023939	0,490188
0,012	914,595	0,00025	0,2308	0,04184	0,00000131	0,286827	50534,18	0,024186	0,024186	0,421981
0,011	914,595	0,00025	0,2308	0,04184	0,00000131	0,262925	46323	0,024468	0,024468	0,358716
0,01	914,595	0,00025	0,2308	0,04184	0,00000131	0,239023	42111,82	0,024794	0,024794	0,300410
0,009	914,595	0,00025	0,2308	0,04184	0,00000131	0,215121	37900,63	0,025176	0,025176	0,247079
0,008	914,595	0,00025	0,2308	0,04184	0,00000131	0,191218	33689,45	0,02563	0,02563	0,198746
0,007	914,595	0,00025	0,2308	0,04184	0,00000131	0,167316	29478,27	0,026182	0,026182	0,155441
0,006	914,595	0,00025	0,2308	0,04184	0,00000131	0,143414	25267,09	0,02687	0,02687	0,117201
0,005	914,595	0,00025	0,2308	0,04184	0,00000131	0,119511	21055,91	0,027757	0,027757	0,084076
0,004	914,595	0,00025	0,2308	0,04184	0,00000131	0,095609	16844,73	0,028958	0,028958	0,056137
0,003	914,595	0,00025	0,2308	0,04184	0,00000131	0,071707	12633,54	0,03071	0,03071	0,033487
0,002	914,595	0,00025	0,2308	0,04184	0,00000131	0,047805	8422,363	0,033612	0,033612	0,016290
0,001	914,595	0,00025	0,2308	0,04184	0,00000131	0,023902	4211,182	0,039988	0,039988	0,004845

Tablica 25. Proračun linijskih gubitaka uslijed trenja u cijevi podmorskog ispusta u ovisnosti o protoku

Q (m3/s)	ε(m)	D _{faz}	A _{faz}	v (m/s)	Re	L _{faz} (m)	λ_{pretp}	λ _{izr.}	Δh _{lin} ^{faz} (m v.s.)	Δh _{dif} (m v.s.)	Brzinska visina(m)
0,044	0,00025	0,180	0,025447	1,729091	237585	5,00	0,022257	0,022257	0,0989206	0,3038496	0,059253045
0,043	0,00025	0,180	0,025447	1,689793	232185,3	5,00	0,022278	0,022278	0,0945638	0,2901952	0,056590331
0,042	0,00025	0,180	0,025447	1,650496	226785,7	5,00	0,022299	0,022299	0,0903048	0,2768547	0,053988828
0,041	0,00025	0,180	0,025447	1,611198	221386	5,00	0,022322	0,022322	0,0861436	0,2638281	0,051448538
0,040	0,00025	0,180	0,025447	1,571901	215986,4	5,00	0,022346	0,022346	0,0820802	0,2511154	0,048969459
0,039	0,00025	0,180	0,025447	1,532603	210586,7	5,00	0,022371	0,022371	0,0781146	0,2387166	0,046551592
0,038	0,00025	0,180	0,025447	1,493306	205187	5,00	0,022397	0,022397	0,0742469	0,2266316	0,044194937
0,037	0,00025	0,180	0,025447	1,454008	199787,4	5,00	0,022425	0,022425	0,0704769	0,2148606	0,041899493
0,036	0,00025	0,180	0,025447	1,414711	194387,7	5,00	0,022454	0,022454	0,0668047	0,2034035	0,039665262
0,035	0,00025	0,180	0,025447	1,375413	188988,1	5,00	0,022484	0,022484	0,0632304	0,1922602	0,037492242
0,034	0,00025	0,180	0,025447	1,336116	183588,4	5,00	0,022516	0,022516	0,0597538	0,1814309	0,035380434
0,033	0,00025	0,180	0,025447	1,296818	178188,7	5,00	0,022550	0,02255	0,0563751	0,1709154	0,033329838
0,032	0,00025	0,180	0,025447	1,257521	172789,1	5,00	0,022585	0,022585	0,0530942	0,1607138	0,031340454
0,031	0,00025	0,180	0,025447	1,218223	167389,4	5,00	0,022623	0,022623	0,0499112	0,1508262	0,029412281
0,030	0,00025	0,180	0,025447	1,178926	161989,8	5,00	0,022663	0,022663	0,0468260	0,1412524	0,027545321
0,029	0,00025	0,180	0,025447	1,139628	156590,1	5,00	0,022706	0,022706	0,0438386	0,1319925	0,025739572
0,028	0,00025	0,180	0,025447	1,10033	151190,4	5,00	0,022752	0,022752	0,0409491	0,1230465	0,023995035
0,027	0,00025	0,180	0,025447	1,061033	145790,8	5,00	0,022800	0,0228	0,0381575	0,1144144	0,02231171
0,026	0,00025	0,180	0,025447	1,021735	140391,1	5,00	0,022852	0,022852	0,0354638	0,1060963	0,020689596
0,025	0,00025	0,180	0,025447	0,982438	134991,5	5,00	0,022907	0,022907	0,0328679	0,0980919	0,019128695
0,024	0,00025	0,180	0,025447	0,94314	129591,8	5,00	0,022967	0,022967	0,0303699	0,0904015	0,017629005
0,023	0,00025	0,180	0,025447	0,903843	124192,2	5,00	0,023031	0,023031	0,0279699	0,0830250	0,016190527
0,022	0,00025	0,180	0,025447	0,864545	118792,5	5,00	0,023101	0,023101	0,0256678	0,0759624	0,014813261
0,021	0,00025	0,180	0,025447	0,825248	113392,8	5,00	0,023176	0,023176	0,0234636	0,0692137	0,013497207
0,020	0,00025	0,180	0,025447	0,78595	107993,2	5,00	0,023258	0,023258	0,0213575	0,0627788	0,012242365
0,019	0,00025	0,180	0,025447	0,746653	102593,5	5,00	0,023347	0,023347	0,0193493	0,0566579	0,011048734
0,018	0,00025	0,180	0,025447	0,707355	97193,86	5,00	0,023446	0,023446	0,0174392	0,0508509	0,009916315
0,017	0,00025	0,180	0,025447	0,668058	91794,2	5,00	0,023554	0,023554	0,0156271	0,0453577	0,008845108
0,016	0,00025	0,180	0,025447	0,62876	86394,54	5,00	0,023674	0,023674	0,0139131	0,0401785	0,007835113
0,015	0,00025	0,180	0,025447	0,589463	80994,88	5,00	0,023807	0,023807	0,0122973	0,0353131	0,00688633
0,014	0,00025	0,180	0,025447	0,550165	75595,22	5,00	0,023957	0,023957	0,0107798	0,0307616	0,005998759
0,013	0,00025	0,180	0,025447	0,510868	70195,57	5,00	0,024126	0,024126	0,0093605	0,0265241	0,005172399
0,012	0,00025	0,180	0,025447	0,47157	64795,91	5,00	0,024319	0,024319	0,0080396	0,0226004	0,004407251
0,011	0,00025	0,180	0,025447	0,432273	59396,25	5,00	0,024542	0,024542	0,0068172	0,0189906	0,003703315
0,010	0,00025	0,180	0,025447	0,392975	53996,59	5,00	0,024800	0,0248	0,0056934	0,0156947	0,003060591
0,009	0,00025	0,180	0,025447	0,353678	48596,93	5,00	0,025106	0,025106	0,0046685	0,0127127	0,002479079
0,008	0,00025	0,180	0,025447	0,31438	43197,27	5,00	0,025472	0,025472	0,0037425	0,0100446	0,001958778
0,007	0,00025	0,180	0,025447	0,275083	37797,61	5,00	0,025922	0,025922	0,0029159	0,0076904	0,00149969
0,006	0,00025	0,180	0,025447	0,235785	32397,95	5,00	0,026488	0,026488	0,0021891	0,0056501	0,001101813
0,005	0,00025	0,180	0,025447	0,196488	26998,29	5,00	0,027226	0,027226	0,0015626	0,0039237	0,000765148
0,004	0,00025	0,180	0,025447	0,15719	21598,64	5,00	0,028238	0,028238	0,0010372	0,0025112	0,000489695
0,003	0,00025	0,180	0,025447	0,117893	16198,98	5,00	0,029732	0,029732	0,0006143	0,0014125	0,000275453
0,002	0,00025	0,180	0,025447	0,078595	10799,32	5,00	0,032244	0,032244	0,0002961	0,0006278	0,000122424
0,001	0,00025	0,180	0,025447	0,039298	5399,659	5,00	0,037841	0,037841	0,0000869	0,0001569	3,06059E-05

Tablica 26. Proračun linijskih gubitaka uslijed trenja u tlačnoj cijevi crpne stanice i gubitak na difuzoru u ovisnosti o protoku

ξ (bočno)	Razlika brzina zbog	4*ξ (bočno)	ΔH (bočno)	
	bocnog otvora		0.0105.06	
3,801E-05	0,0001	1,521E-04	9,010E-06	
3,690E-05	0,0001	1,550E-04	8,605E-00	
3,982E-05	0,0001	1,593E-04	8,000E-00	
4,080E-05	0,0001	1,032E-04	8,390E-00	
4,182E-05	0,0001	1,073E-04	8,191E-06	
4,289E-05	0,0001	1,710E-04	7,980E-00	
4,402E-05	0,0001	1,761E-04	7,781E-06	
4,521E-05	0,0001	1,808E-04	7,577E-06	
4,646E-05	0,0001	1,858E-04	7,372E-06	
4,779E-05	0,0001	1,912E-04	7,167E-06	
4,920E-05	0,0001	1,968E-04	6,962E-06	
5,069E-05	0,0001	2,027E-04	6,757E-06	
5,227E-05	0,0001	2,091E-04	6,553E-06	
5,396E-05	0,0001	2,158E-04	6,348E-06	
5,575E-05	0,0001	2,230E-04	6,143E-06	
5,768E-05	0,0001	2,307E-04	5,938E-06	
5,974E-05	0,0001	2,389E-04	5,734E-06	
6,195E-05	0,0001	2,478E-04	5,529E-06	
6,433E-05	0,0001	2,573E-04	5,324E-06	
6,691E-05	0,0001	2,676E-04	5,119E-06	
6,969E-05	0,0001	2,788E-04	4,914E-06	
7,272E-05	0,0001	2,909E-04	4,710E-06	
7,603E-05	0,0001	3,041E-04	4,505E-06	
7,965E-05	0,0001	3,186E-04	4,300E-06	
8,363E-05	0,0001	3,345E-04	4,095E-06	
8,803E-05	0,0001	3,521E-04	3,891E-06	
9,292E-05	0,0001	3,717E-04	3,686E-06	
9,839E-05	0,0001	3,936E-04	3,481E-06	
1,045E-04	0,0001	4,182E-04	3,276E-06	
1,115E-04	0,0001	4,460E-04	3,072E-06	
1,195E-04	0,0001	4,779E-04	2,867E-06	
1,287E-04	0,0001	5,147E-04	2,662E-06	
1,394E-04	0,0001	5,575E-04	2,457E-06	
1,521E-04	0,0001	6,082E-04	2,252E-06	
1,673E-04	0,0001	6,691E-04	2,048E-06	
1,858E-04	0,0001	7,434E-04	1,843E-06	
2,091E-04	0,0001	8,363E-04	1,638E-06	
2,389E-04	0,0001	9,558E-04	1,433E-06	
2,788E-04	0,0001	1,115E-03	1,229E-06	
3,345E-04	0,0001	1,338E-03	1,024E-06	
4,182E-04	0,0001	1,673E-03	8,191E-07	
5,575E-04	0,0001	2,230E-03	6,143E-07	
8.363E-04	0.0001	3.345E-03	4.095E-07	
1,673E-03	0,0001	6,691E-03	2,048E-07	

Tablica 27. Proračun gubitaka zbog bočnog istjecanja na dva otvora za evakuaciju zraka

Q (m ³ /s)	H _{OSEKA} ^{1CRPKA} (m)	H _{PLIMA} ^{1CRPKA} (m)	H _{OSEKA} ^{2CRPKE} (m)	H _{PLIMA} ^{2CRPKE} (m)	H _{DNO} PLIMA (m)	H _{DNO} ^{OSEKA} (m)
0,044	7,841	9,340	7,700	9,140	9,940	8,501
0,043	7,603	9,100	7,460	8,900	9,700	8,261
0,042	7,371	8,865	7,225	8,665	9,465	8,026
0,041	7,144	8,636	6,996	8,436	9,236	7,797
0,040	6,923	8,412	6,772	8,212	9,012	7,573
0,039	6,706	8,193	6,553	7,993	8,793	7,354
0,038	6,495	7,980	6,340	7,780	8,580	7,141
0,037	6,290	7,772	6,132	7,572	8,372	6,933
0,036	6,089	7,569	5,929	7,369	8,169	6,730
0,035	5,894	7,372	5,732	7,172	7,972	6,533
0,034	5,704	7,180	5,540	6,980	7,780	6,341
0,033	5,519	6,993	5,353	6,793	7,593	6,154
0,032	5,340	6,811	5,171	6,611	7,411	5,972
0,031	5,166	6,635	4,995	6,435	7,235	5,796
0,030	4,997	6,465	4,825	6,265	7,065	5,626
0,029	4,834	6,299	4,659	6,099	6,899	5,460
0,028	4,675	6,139	4,499	5,939	6,739	5,300
0,027	4,522	5,985	4,345	5,785	6,585	5,146
0,026	4,375	5,835	4,195	5,635	6,435	4,996
0,025	4,232	5,691	4,051	5,491	6,291	4,852
0,024	4,095	5,553	3,913	5,353	6,153	4,714
0,023	3,963	5,419	3,779	5,219	6,019	4,580
0,022	3,837	5,291	3,651	5,091	5,891	4,452
0,021	3,715	5,169	3,529	4,969	5,769	4,330
0,020	3,599	5,052	3,412	4,852	5,652	4,213
0,019	3,489	4,940	3,300	4,740	5,540	4,101
0,018	3,383	4,833	3,193	4,633	5,433	3,994
0,017	3,283	4,732	3,092	4,532	5,332	3,893
0,016	3,188	4,636	2,996	4,436	5,236	3,797
0,015	3,099	4,546	2,906	4,346	5,146	3,707
0,014	3,015	4,461	2,821	4,261	5,061	3,622
0,013	2,936	4,381	2,741	4,181	4,981	3,542
0,012	2,863	4,307	2,667	4,107	4,907	3,468
0,011	2,795	4,238	2,598	4,038	4,838	3,399
0,010	2,732	4,175	2,535	3,975	4,775	3,336
0,009	2,674	4,117	2,477	3,917	4,717	3,278
0,008	2,623	4,064	2,424	3,864	4,664	3,225
0,007	2,576	4,018	2,378	3,818	4,618	3,179
0,006	2,535	3,976	2,336	3,776	4,576	3,137
0,005	2,500	3,940	2,300	3,740	4,540	3,101
0,004	2,470	3,910	2,270	3,710	4,510	3,071
0,003	2,446	3,886	2,246	3,686	4,486	3,047
0,002	2,427	3,867	2,227	3,667	4,467	3,028
0.001	2.415	3.855	2.215	3.655	4.455	3.016

Tablica 28. Proračun visina dizanja crpke za različite režime rada za izmještenu trasu cjevovoda

Slika 30. Radne točke CS "Tribunj" za izmještenu trasu podmorskog ispusta u ovisnosti o razini mora i varijaciji razine vode u usisnom bazenu

Tablica 29. Radne točke sa pripadajućim	brzinama tečenja i	u cijevi podmorskog	ispusta za izmještenu
	trasu		

Radna točka	1.	2.	3.	4.	5.	6.	7.	8.
Q (I/s)	53,318	50,148	48,98	51,97	66,12	63,01	61,151	64,378
H (m)	10,31	10,97	11,212	10,601	14,368	14,681	14,878	14,539
Vispust (m/s)	1,275	1,199	1,171	1,243	1,581	1,507	1,462	1,539
Hbazen(m n.m.)	-1,8	-1,8	-2,4	-2,4	-1,6	-1,6	-2,4	-2,4
Hmore (m n.m.)	-0,4	1	1	-0,4	-0,4	1	1	-0,4

Provedena je dodatna kontrola evakuacije zraka definiranjem minimalne brzine tečenja u cijevi ispusta za potrebe evakuacije zraka *prema Marine Wastewater Outfalls and Treatment Systems; Roberts et. Al; 2010.:*

$$V_C = K \sqrt{g \cdot D}$$

Gdje je:- $g=9,81 \text{ (m/s^2)}$

-D=230,8 mm

-K- koeficijent koji ovisi o nagibu nivelete podmorskog ispusta (prema Uzdužnom presjeku budućega stanja, prilog broj 4) za maksimalni nagib cjevovoda u odnosu na horizontalu 16,793°iznosi K=0,81. Minimalna brzina tečenja nužna da bi se osigurala evakuacija zraka iz cijevi podmorskog ispusta u slučaju začepljenja otvora za evakuaciju zraka iznosi V_C=1,218 (m/s). Pregledom *Tablice 29.* vidljivo je da za kombinacije pogonskih parametara nije osigurana evakuacija zraka u slučaju radnih točaka 2. i 3. na osnovu kriterija minimalne brzine tečenja. Treba napomenuti kako su vrijednosti brzina ostvarenih proračunom nezamjetno manje u odnosu na V_C=1,218 (m/s). Nadalje, kako se proračun vršio za najveću razinu plime i oseke koja se javlja jednom za vrijeme nodalnog ciklusa (18,6 godimu) pitanje je kolika je vjerojatnost da u tom kratkom vremenskom periodu crpna stanica "Tribunj" radi jer je programirana da se uključuje kad razina u usisnom bazenu dođe na kotu -1,6 i -1,8 (m). malo je vjerojatno da ce ispust i CS raditi baš u trenutku ostvarenja najveće plime.

Osigurana je minimalna brzina nužna za samoispiranje cijevi podmorskog ispusta -V_{ISPIRANJE}=0,95(m/s) (*prema Marine Wastewater Outfalls and Treatment Systems; Roberts et. Al;str.395*).

3. OSIGURANJE STATIČKE STABILNOSTI IZMJEŠTENE DIONICE PODMORSKOG ISPUSTA

Dionica podmorskog ispusta, koju je potrebno premjestiti, duga je 155,883 (m) (*Tablica 1.*, poglavlje 1.3). Postupak premještanja cjevovoda odrađuju ronioci na način da prvo oslobode dionicu na prirubničkim spojevima u karakterističnim točkama S-26 i L-52 (uzdužni presjek postojećeg stanja). Koriste se balonima koje vežu za primarne opteživače jer su upravo primarni opteživači fiksirani za cijev podmorskog ispusta, dok su sekundarni opteživači privremeno uklonjeni. Balone za uzgon i vertikalni transport dionice podmorskog ispusta pune zrakom do te razine da se cijev ravnomjerno odigne od dna te jednostavno premjeste cjevovod na unaprijed definiranu trasu (uzdužni presjek budućeg stanja; situacija 2.). U ovom poglavlju osiguranja statičke stabilnosti vrši se kontrola stabilnosti izmještene dionice podmorskog ispusta. Uzima se u obzir djelovanje uzgona, morskih struja te vjetrovnog vala na izmještenu dionicu u fazi rada. Provjerit će se i naprezanja cjevovoda uslijed djelovanja uzgona, morskih struja i valova na cjevovod u fazi izmještanja kako bi se utvrdilo da neće doći do pojave tolikih radijusa zakrivljenosti na cijevi koji bi mogli uzrokovati oštećenja cjevovoda.

3.1 Mjerodavni ulazni parametri

3.1.1 Morske struje

Poznavanje karakteristika morskih struja u nekom akvatoriju od velikog je značaja za mnogobrojne djelatnosti, a posebno za hidrotehničke projekte. Morske struje se dijele ovisno o silama koje ih uzrokuju:

- 1. Sila koja nastaje zbog horizontalnih razlika u gustoći mora- gradijentske struje,
- 2. Plimotvorna sila koja uzrokuje struje morskih dobi,
- 3. Sila potiska vjetra koja nastaje djelovanjem tangencijalne napetosti vjetra na površinu mora-**struje drifta**.

Osim sila uzročnica, na strujanje znatno utječu dimenzije te topografske karakteristike obale i morskog dna određenog bazena. Generalno ciklonalno strujanje, koje prevladava u Jadranskom moru, objašnjava se dugoperiodičkim gradijentskim strujama koje su posljedica razlika gustoće mora. Slatka voda iz sjevernojadranskih rijeka, a u najvećim količinama iz rijeke Po, dotječe u Jadransko more te se pod utjecajem Coriolisove sile giba uz talijansku obalu Jadrana. Takvo gibanje rezultira generalnom strujom suprotnog smjera uz hrvatsku obalu. Prevladavajući smjer gradijentskih struja duž hrvatske obale je NW.

Mjerenja morskih struja u širem akvatoriju Vodica obavljeno je u razdoblju od 11.rujna 2001.godine do 10. listopada 2001.godine. Mjerenja su vršena na dvije postaje (ASS-1 i ASS-2) i na dvije razine: u površinskom sloju (dubina 3 m) i pridnenom sloju (4 m iznad morskog dna)(ista su prikazana u tablici X i X). Korišteni su autonomni strujomjeri AANDERAA RCM-7, uzorkovanje je vršeno svakih 10 minuta. Na slici X. prikazan je prostorni raspored oceanografskih (OC) i strujomjernih (ASS) postaja u području planiranog ispusta otpadnih voda kanalizacijskog sustava Srima-Tribunj-Vodice.

Slika 31. Prostorni raspored oceanografskih (OC) i strujomjernih (ASS) postaja u području planiranog ispusta otpadnih voda kanalizacijskog sustava Srima-Tribunj-Vodicev

ASS-1

Smjer morske struje označava se kao smjer kuda vodena masa struji, za razliku od smjera puhanja vjetra. Maksimalne izmjerene brzine struja na postaji ASS-1 su 31 cm/s u površinskom sloju (3 m) i 19 cm/s u pridnenom sloju (46 m), a srednje vrijednosti brzine su 5.5 cm/s (3 m) i 2.6 cm/s (46 m)(*Tablica 30*.). Rezultantno strujanje je u smjeru NW u površinskom sloju, te u smjeru S u pridnenom sloju.

Faktor stabilnosti predstavlja mjeru stalnosti smjera strujanja za odgovarajući period mjerenja i izražava se u postotcima. Pri površini njegova vrijednost je 21.7 %, a pri dnu je 35.4 % iz

čega se može zaključiti da postoji velika promjenjivost smjera strujanja, posebno u površinskom sloju.

Standardne devijacije brzine struja u oba sloja su nešto manje od odgovarajućih srednjih vrijednosti pa se može zaključiti da je promjena brzine strujanja relativno mala.

Osnovni statistički parametri morskih struja izmjerenih na postaji ASS-1 prikazani su u *Tablici 30*.

Tablica 30. Osnovni statistički parametri morskih struja izmjerenih na postaji ASS-1 u vremenskom razdoblju 11.09.2001.-10.10.2001. godine

SRIMA-TRIBUNJ-VODICE (ASS-1)								
DUBINA (m)	3	46						
MAKSIMALNA BRZINA (cm/s)	31,0	19,0						
SREDNJA BRZINA (cm/s)	3,5	2,6						
MINIMALNA BRZINA (cm/s)	1,0	1,0						
STANDARDNA DEVIJACIJA cm/s)	4,6	2,5						
REZULTANTNI VEKTOR (cms ⁻¹ /deg)	1,20/323	0,91/184						
FAKTOR STABILNOSTI (%)	21,7	35,4						

U Kartezijevom koordinatnom sustavu su prikazani satni vektori morskih struja (*Slika 32.*), iz kojeg se vidi da u površinskom sloju prevladavaju struje NW (27%) i SE (18%) smjera, a u pridnenom sloju struje S (27%), SE (16%) i SW (16%) smjera. U površinskom sloju je oko 28 % strujanja usmjereno prema obali, a u pridnenom sloju oko 19 % strujanja. Sve opisane karakteristike strujnog polja na postaji ASS-1 najbolje se vide na hodogramu morskih struja (*Slike 33. i 34.*) koji se dobije sukcesivnim spajanjem pojedinačnih vektora morskih struja te na taj način pokazuje stazu kretanja morske vode.

Na dubini od 3 m je sjeverna komponenta prevaljenog puta (29310 m) za oko 30% veća od istočne komponente prevaljenog puta (22944 m). U pridnenom sloju (46 m) sjeverna komponenta prevaljenog puta (23124 m) je oko 3 puta veća od istočne komponente prevaljenog puta (7644 m).

Spektralna analiza morskih struja (*Slike 36. i 37.*) pokazuje da su najveće energije strujanja na periodima plimnih oscilacija (24 i 12 sati), te na dugim periodima (gradijentske struje i atmosferski sinoptički poremećaji).

Slika 32. Satni vektori morskih struja prikazani u Kartezijevom sustavu na postaji ASS-1

E-KOM: 22944 M

POSTAJA BR:ASS1IME POSTAJE:TRIBUNJDUBINA DO DNA:50DUBINA MJERENJA:3INTERVAL MJERENJA:10DATUM POC.OBRADE:11.9.200116:40DATUM ZAV.OBRADE:10.10.200115:0

Slika 33. Hodogram morskih struja na dubini od 3 metra na postaji ASS-1

POSTAJA BR:ASS1 IME POSTAJE: TRIBUNJ DUBINA DO DNA: 50 DUBINA MJERENJA: 46 INTERVAL MJERENJA: 10 DATUM POC.OBRADE: 11. 9.2001 16:40 DATUM ZAV.OBRADE: 10.10.2001 15: 0

Slika 34. Hodogram morskih struja na dubini od 46 metara na postaji ASS-1

0-11 12-23 24-35 36-47 48-59 60-71 >72

Slika 36. Totalni spektar snage morskih struja u površinskom sloju na postaji ASS-1

Slika 37. Totalni spektar snage morskih struja u pridnenom sloju na postaji ASS-1

ASS-2

Osnovni statistički parametri morskih struja izmjerenih na postaji ASS-2 u periodu od 11.rujna 2001.godine do 10.listopada 2001.godine prikazani su u *Tablici 31*. Maksimalne izmjerene brzine struja su 37 cm/s u površinskom sloju (3 m) i 13 cm/s u pridnenom sloju (58m), a srednje vrijednosti brzine su 9.1 cm/s (3 m) i 2.3 cm/s (58 m). Iznosi maksimalnih i srednjih vrijednosti brzina u površinskom sloju na postaji ASS-2 su veći nego na postaji ASS-

1, dok su maksimalne brzine u pridnenom sloju postaje ASS-1 veće nego na postaji ASS-2. Srednje vrijednosti brzina struja u pridnenom sloju su praktički iste na obje postaje.

Rezultantno strujanje je u smjeru NW u površinskom sloju, tj.u smjeru WSW u pridnenom sloju. Faktor stabilnosti u površinskom sloju je relativno visok (59.8%), dok je u pridnenom niži (38.1%). Zaključuje se da je smjer struje u površinskom sloju relativno stabilan u odnosu na nešto nestabilniji u pridnenom sloju. Ako se smjer strujanja uspoređuje sa smjerom strujanja na postaji ASS-1, na postaji ASS-2 je u cijelom vodnom stupcu stabilniji.

Standardna devijacija brzine struja je manja od srednje vrijednosti u površinskom sloju što ukazuje na malu promjenjivost brzine struje, dok je u pridnenom sloju obrnuto (standardna devijacija veća od srednje vrijednosti što povlači i nešto veću promjenjivost brzine struje u tom sloju).

SRIMA-TRIBUNJ-VODICE (ASS-2)									
DUBINA (m)	3	58							
MAKSIMALNA BRZINA (cm/s)	37,0	13,0							
SREDNJA BRZINA (cm/s)	9,1	2,3							
MINIMALNA BRZINA (cm/s)	1,0	1,0							
STANDARDNA DEVIJACIJA cm/s)	6,7	2,4							
REZULTANTNI VEKTOR (cms ⁻¹ /deg)	5,43/306	0,87/244							
FAKTOR STABILNOSTI (%)	59,8	38,1							

Tablica 31. Osnovni statistički parametri morskih struja izmjerenih na postaji ASS-2 u vremenskom razdoblju 11.09.2001.-10.10.2001. godine

U Kartezijevom koordinatnom sustavu su prikazani satni vektori morskih struja, iz kojeg se vidi da u površinskom sloju prevladavaju struje NW (36%) i W (18%) smjera, a u pridnenom sloju struje W (44%) i SW (19%) smjera (*Slika 38.*). U površinskom sloju je oko 23 % strujanja usmjereno prema obali, a u pridnenom sloju oko 8 % strujanja. S obzirom sa je na postaji ASS-2 postotak strujanja usmjerenog prema obali više od dva puta manji u odnosu na postaju ASS-1 (19% na postaji ASS-1, te 8% na postaji ASS-2), preporuča se postavljanje ispusta otpadnih voda na lokaciji postaje ASS-2. Sve opisane karakteristike strujnog polja na postaji ASS-2 najbolje se vide na hodogramu morskih struja (*Slike 40. i 41.*)...
Na dubini od 3 m je sjeverna komponenta prevaljenog puta (80245 m) za oko 30% manja od istočne komponente prevaljenog puta (112798 m). U pridnenom sloju (58 m) sjeverna komponenta prevaljenog puta (11295 m) je oko 2 puta manja od istočne komponente prevaljenog puta (22275 m). Prevaljeni put u površinskom sloju u istom vremenskom razdoblju je znatno veći na postaji ASS-2, dok je u pridnenom sloju sličan na obje postaje, no te veličine nije moguće uspoređivati na dvije postaje, jer je promjenjivost smjera strujanja na postaji ASS-1 bila znatno veća.

Spektralna analiza morskih struja (*Slike 42. i 43.*) pokazuje da su najveće energije strujanja na dugim periodima (gradijentske struje i atmosferski sinoptički poremećaji), te na periodima plimnih oscilacija (24 i 12 sati).

Slika 38. Satni vektori morskih struja prikazani u Kartezijevom sustavu na postaji ASS-2

Slika 39. Ruža struja na postaji ASS-2

Slika 40. Hodogram morskih struja na dubini od 3 metra na postaji ASS-2

Slika 41. Hodogram morskih struja na dubini od 46 metara na postaji ASS-2

Slika 42. Totalni spektar snage morskih struja u površinskom sloju na postaji ASS-2

Slika 43. Totalni spektar snage morskih struja u pridnenom sloju na postaji ASS-2

3.1.2 Vjetar

Vjetar je vektorska veličina te je za cjelokupno poznavanje njegovih karakteristika potrebno poznavati njegovu brzinu i smjer. Za smjer vjetra se uzima ona strana odakle vjetar puše, te se određuje za 16 smjerova, koji se bilježe velikim slovima prema engleskim nazivima za odgovarajuću stanu svijeta. Srednja brzina (jačina) vjetra, u ovisnosti o smjeru iz kojeg vjetar puše, prikazuje se ružom vjetrova. Jedinica za brzinu vjetra je metar u sekundi (m/s), kilometar na sat (km/h), čvor (čv), dok se u pomorstvu jačina vjetra procjenjuje prema Boforovoj skali koja ima 13 stupnjeva-od 0 (tišina) do 12 (orkan).

Karakteristični vjetrovi na istočnoj obali Jadrana po brzini i smjeru u zimskom razdoblju su:

-Bura (NNE,NE i ENE vjetar)-sjeveroistočni vjetar, suh, hladan i mahovit, obično se javlja nakon prolaska ciklonalne fronte. Uglavnom puše prema moru što inače određuje konfiguracija obalnih planinskih masiva.

-Jugo (ESE,SE i SSE vjetar)-puše jednoličnom brzinom i stvara velike valove. Redovito puše na prednjoj strani ciklonalnih poremećaja koji prelaze područje Jadrana od zapada prema istoku.

-Maestral (NW vjetar)- osvježavajući sjeverozapadni <u>vjetar</u> koji u toplim danima puše s <u>mora</u> na <u>kopno</u>. Javlja se uglavnom ljeti i puše samo uz obalu. Na šibenskom području puše u 4.8% slučajeva na godišnjoj razini.

-Tramontana (N vjetar)- na području Šibenika se javlja u 10.0 % slučajeva na godišnjoj razini. To je prolazni i kratkotrajni vjetar iz smjera sjevera koji uz obalu ne dostiže velike brzine, dok na moru traje znatno duže dostižući velike brzine.

-Garbin (WSW vjetar)- na području Šibenika se javlja u 4.9 % slučajeva godišnje. To je topli vjetar koji uglavnom ne traje dugo, ali može biti vrlo jak. Stvara jako velike valove i muti more. Osobito je opasan zbog stvaranja ukriženih valova i poplavnog dizanja mora u plitkim lukama koje su otvorene prema jugozapadu.

Tišine, odnosno situacije bez vjetra, najčešće su ljeti i u proljeće. Na godišnjoj razini postotak tišine kreće se oko 19.6 %.

Umjereni vjetar (5.5 do 10.7 m/s, tj. 4 i 5 Bf) se javlja na šibenskom području u 20.4 % slučajeva godišnje. Umjereni vjetrovi su N,NNE,ESE, i SE vjetrovi.

Jak vjetar (>10.7 m/s, tj. ≥8 Bf) se javlja u 6.4% slučajeva godišnje, a puše uglavnom iz NNE smjera. Olujni vjetar (>17.1 m/s, tj. ≥8 Bf) u promatranom razdoblju zabilježen je u 0.51% slučajeva iz smjerova N i NNE.

Za dugoročnu valnu prognozu na području obalnog pojasa Vodice-Srima-Prvid, korišteni su klimatološki podatci o vjetru s glavne meteorološke postaje Šibenik, mjereni 41 godinu (u periodu od siječnja 1971.do prosinca 2011.godine). Numerički podaci o relativnoj učestalosti i jakosti vjetra za jednu godinu prikazani su u tablici kontigencije vjetra (*Tablica 32*.) Tablica je dobivena statističkom obradom srednjih satnih brzina vjetra s pripadajućim smjerovima.

Grafički prikaz učestalosti pojavljivanja vjetra u ovisnosti o smjeru i jačini za postaju Šibenik prikazana je na ruži vjetrova (*Slika 44*.).

Tablica 32	Vjerojatnost istovren	ienog pojavljivanja r	azličitih smjerov	va vjetra (%) p	o klasama j	jačine
	(Bf) i brzine (m/s)	vjetra za Šibenik, za	godinu u razdol	blju 1971 201	2	

jačina (Bf)	0	1	2	3	4	5	6	7	8	9	10		Xeetine
brzina (m/s)	0.0-0.2	0.3-1.5	1.6-3.3	3.4-5.4	5.5-7.9	8.0-10.7	10.8-13.8	13.9-17.1	17.2-20.7	20.8-24.4	24.5-28.4	zbroj	smjera %
N		10,6	15,2	21	21,7	16,9	10,6	3,1	0,8	0,2	0,1	100,2	10,0
NNE		14,8	27,3	35,3	38,4	33,7	24,5	4,6	2,2	0,3	0,1	181,2	18,1
NE		7	7,6	5,9	3,8	1,7	0,7	0,1				26,8	2,7
ENE		7	8,5	5,8	2,5	0,8	0,2					24,8	2,5
E		13,3	16,1	12,6	6,6	2,2	0,9	0,1				51,8	5,2
ESE		13,5	14,8	12,9	10,4	6,9	4,4	0,9	0,2	0,1		64,1	6,4
SE		12,6	10,9	11,1	8,8	5,7	6,7	1,5	0,7	0,1	0,1	58,2	5,8
SSE		9,1	8,3	7,5	5,7	3	2,1	0,4	0,1			36,2	3,6
S		5,7	8,7	9,3	5,9	1,7	1,1	0,1	0,1			32,6	3,3
SSW		7	12,9	14,2	5,3	1,4	0,2					41	4,1
sw		8,8	10,1	7,6	1,3	0,1	0,1					28	2,8
wsw		8,3	19,8	16,5	3,6	0,3	0,1					48,6	4,9
w		11	14,2	10,5	2,7	0,5	0,1					39	3,9
WNW		4,8	4,6	2,3	0,6	0,2						12,5	1,3
NW		4,8	3,5	2,6	0,9	0,2	0,1					12,1	1,2
NNW		10	13,8	11,7	6,7	3,9	1,1	0,4				47,6	4,8
С	195,8											195,8	19,6
zbroj	195,8	148,3	196,3	186,8	124,9	79,2	52,9	11,1	4,1	0,7	0,3	1000	100,0

Slika 44. Godišnja ruža vjetra na meteorološkoj postaji Šibenik

3.2 Postupak kontrole opterećenja ispusta

3.2.1 Djelovanje uzgona na cjevovod

Prilikom opterećivanja cijevi podmorskog ispusta razlikuju se dvije faze:

-Opteživanje cijevi u fazi manevra cjevovodom podmorskog ispusta

-Osiguranje stabilnosti cjevovoda u fazi eksploatacije (u radnim uvjetima cjevovoda).

Uzgon predstavlja vertikalnu silu koja djeluje prema gore olakšavajući težine predmeta uronjenih u morsku vodu, za težinu vode istisnute uranjanjem predmeta u morsku vodu.

Jedinična težina tvrdog polietilena, koji sačinjava cijevi podmorskog ispusta, manja je od jedinične težine mora. Kako bi se eliminirao utjecaj uzgona i samim time omogućilo potapanje cjevovoda postavljaju se primarni betonski opteživači duž cjevovoda. Broj primarnih opteživača ovisi o duljini cjevovoda i o veličini sile uzgona. Dionica koja se premješta duga je 155,883 (m) (od točke L-32 km 0+590,60 do točke km L-52 0+745,52 prema Situacija budućeg stanja, prilog broj 2 i Uzdužni presjek postojećeg stanja ; prilog broj 3). Na video snimku iz 2008.godine snimljenom neposredno nakon polaganja cjevovoda, uočeno je postojanje:

-27 komada primarnog opteživača mase 130 (kg)

-29 komada sekundarnog opteživača mase 210 (kg)

Navedena količina opteživača uspješno je preuzimala sva opterećenja na cjevovod podmorskog ispusta nastala uslijed uzgona, morskih struja i djelovanja vjetrovnih valova. U fazi premještanja trase cjevovoda, kao i u fazi eksploatacije istog, također se javlja sila uzgona te je stoga potrebno provjeriti i osigurati stabilnost cjevovoda od klizanja po morskom dnu, isplivavanja na morsku površinu te prevrtanja oko osi cijevi.

Za taj proračun je potrebno odrediti:

-uzgon koji djeluje na cijev ispusta ispunjenu vodom

$$U_{PEHD+VODA} = V \cdot g \cdot \rho_{MORA}$$

-uzgon na primarne opteživače

 $U_{PRIMARNI} = V_{PRIMARNI} \cdot g \cdot \rho_{MORA},$

gdje je:

$$V = \frac{masa \ primarnog \ opteživača}{gustoća \ betona} = \frac{130}{2500} = 0,052 \ m^3$$

-uzgon na sekundarne opteživače

$$U_{SEKUNDARNI} = V_{SEKUNDARNI} \cdot g \cdot \rho_{MORA}$$

gdje je:
 $V = \frac{masa \ sekundarnog \ opteživača}{gustoća \ betona} = \frac{210}{2500} = 0,084 \ m^3$

-uronjenu težinu cijevi ispunjenu vodom

$$G_{CIJEV+VODA}^{URONJENI} = G_{CIJEV} + G_{VODE \ U \ CIJEVI} - U_{PEHD+VODA}$$

-uronjenu težinu primarnih opteživača

$$G_{PRIMARNI}^{URONJENI} = G_{PRIMARNI} - U_{PRIMARNI}$$

-uronjenu težinu sekundarnih opteživača

 $G_{SEKUNDARNI}^{URONJENI} = G_{SEKUNDARNI} - U_{SEKUNDARNI}$

U *Tablici 33*. prikazane su težine primarnog, sekundarnog opteživača i cijevi kao i težine istih olakšane za uzgon.

ρ(more)	1028	kg/m ³
ρ(voda)	1000	kg/m ³
D _{vanjski}	250	mm
SDR	26	
A _{vanjski profil}	0,04909	m ²
A _{svijetli otvor}	0,04184	m²
D _{unutrašnji}	230,8	mm
A _{cijevi}	0,00725	m²
ρ _{PEHD}	955	kg/m ³
g	9,81	m/s²
G _{cijev}	67,922	N/m'
G _{vode u cijevi}	410,422	N/m'
M _{sekundarni}	210	kg
M _{primarni}	130	Kg
G _{sekundarni}	2060,1	Ν
G _{primarni}	1275,3	N
U _{PEHD+more}	495,0306	N/m'
U _{primarni}	524,4034	N
U _{sekundarni}	847,1131	N
uronjeni G _{PEHD+more}	-16,687	N/m'
uronjeni G _{primarni}	750,8966	N
uronjeni G _{sekundarni}	1212,987	N

Tablica 33. Težine opteživača i cijevi na suhom i težine istih uronjenih u more

3.2.2 Djelovanje morskih struja

Mjerenja morskih strujanja u akvatoriju Vodice-Tribunj (vršena 11.9.2001.-10.10.2001.) i u akvatoriju Betina-Murter (vršena 16.6.2006.-20.7.2006.) povlače usvajanje mjerodavnih vrijednosti strujanja (brzina i smjer):

ASS1; dubina 3 m; 31 cm/s; smjer NW

ASS1; dubina 46 m; 19 cm/s; smjer SE

ASS2; dubina 3 m; 37 cm/s; smjer NW

ASS2; dubina 58 m; 13 cm/s; smjer SE

Podatci sa mjerne postaje Betina-Murter se u iznosu i smjeru podudaraju sa podatcima sa mjerene postaje Vodice-Tribunj pa se kao mjerodavni usvajaju podatci dobiveni na mjerodavnoj postaji Vodice-Tribunj.

Horizontalna sila morske struje koja djeluje na cjevovod podmorskog ispusta definira se kao:

$$F_{H}^{STRUJA} = C_{H} \rho A \frac{V^{2}}{2},$$

gdje je:

 C_H - koeficijent otpora oblika ovisan o kutu nailaska morske struje u odnosu na os nivelete cjevovoda ispusta. Definira se s obzirom na Reynoldsov broj koji u ovom slučaju iznosi Re = 175438.59 za kkv 1,12*10⁻⁶ [m²/s]); (prema *Marine Wastewater Outfalls and Treatment Sytems; Roberts et. Al; str. 238.*). Usvojena vrijednost koeficijenta otpora oblika je 0.83.

 ρ - gustoća morske vode (kg/m³)

A - površina cijevi okomito na smjer strujanja (m²),

V - brzina strujanja (m/s); obzirom na najveće vrijednosti brzine strujanja koje su zabilježene tijekom mjerenja, usvojena vrijednost je 0.4 m/s.

Vertikalna sila morske struje koja djeluje na cjevovod podmorskog ispusta definira se kao:

$$F_V^{STRUJA} = C_V \rho A \frac{V^2}{2},$$

gdje je:

 C_{V} - koeficijent otpora oblika za silu uzgona uzrokovanu morskim strujama. Ovisi o kutu nailaska morske struje u odnosu na os nivelete cjevovoda ispusta. Definira se s obzirom na Reynoldsov broj koji u ovom slučaju iznosi Re = 175438.59 za kkv 1,12*10⁻⁶ [m²/s]); prema *Marine Wastewater Outfalls and Treatment Sytems; Roberts et. Al; str. 238.* Usvojena vrijednost koeficijenta otpora oblika je 1,31.

 ρ - gustoća morske vode (kg/m³),

A - površina cijevi okomito na smjer strujanja (m²),

V - brzina strujanja (m/s); obzirom na najveće vrijednosti brzine strujanja koje su zabilježene tijekom mjerenja, usvojena vrijednost je 0.4 m/s.

Dominantni smjerovi strujanja su u NW i SE smjeru koji s cjevovodom ispusta zatvaraju kut nešto manji od 90° pa se usvaja ortogonalan položaj osi cjevovoda u odnosu na smjer vektora morskih struja. Vrijednosti dobivenih sila strujanja stoga nije potrebno korigirati.

U *Tablici 34*. prikazane su izračunate vrijednosti horizontalnih i vertikalnih sila strujanja koje djeluju po jediničnom metru dužine cjevovoda.

Tablica 34. Izračunate vrijednosti horizontalnih i vertikalnih sila strujanja

MORSKE STRUJE										
$\begin{array}{ c c c c c }\hline C_{H} & C_{V} & D(m) & \rho(kg/m_{3}) & V(m/s) & F_{H}(N/m') & F_{V}(N/m') \\ \hline \end{array}$										
1,31	1,2	0,25	1028	0,4	26,9336	24,672				

3.2.3 Djelovanje vjetrovnog vala

Kod razmatranja djelovanja valova moguće je razlikovati dvije osnovne zone:

-zona dubokog mora kod koje valovi uglavnom nemaju utjecaj na cjevovod i u toj zoni je obično dovoljno "osnovno opterećenje" kojim se postiže stabilnost cjevovoda u odnosu na sile uzgona i djelovanje morskih struja.

-zona utjecaja dna kod koje je potrebno posebno osiguranje zbog djelovanja valova. Ova zona dijeli se na područje početnih deformacija valova i na područje potpunog rušenja vala.

Za proračun utjecaja valova na cjevovod potrebno je poznavati osnovne parametre vala: duljinu, visinu i period vala. Vrijednosti ovih pokazatelja ovise prvenstveno o stalnosti smjera vjetra, njegove brzine, vremena trajanja i duljine privjetrišta na kojem se vjetar razvija. Stabilnost cjevovoda se proračunava na val povratnog perioda jednak vijeku trajanja cjevovoda, odnosno 50 godina, koliki je uglavnom vijek trajanja cijevi od tvrdog polietilena. Sukladno podacima sadržanim u tablici kontigencije, definirane su mjerodavne brzine vjetra za razvoj vjetrovnog vala na mjerodavnoj duljini privjetrišta za odgovarajući povratni period. Odabrana je dubokovodna lokacija od koje su izmjerene duljine privjetrišta za smjerove vjetra koji mogu generirati valove značajnih visina. Zbog razvedenosti obale i kratkog privjetrišta, utjecaj valova nastalih djelovanjem bure nije uzet u obzir.

Slika 45. Akvatorij "Tribunj" s definiranim privjetrištima

Kratkoročna valna analiza provedena je korištenjem "*Gröen and Dorrestein"* dijagrama. Za pojedine smjerove i jačine vjetra očitane su valne visine i periodi, (*Tablica 35.*). Najveći utjecaj na odabrano područje imaju valovi koji nastaju djelovanjem vjetra iz smjera SE na duljini privjetrišta od 19.13 km. Taj smjer je najkritičniji i u pogledu smjera propagacije vala na os cjevovoda podmorskog ispusta. Vjetrovi koji djeluju iz ostalih smjerova imaju znatno kraća privjetrišta ili znatno manje jačine i trajanja, što rezultira razvojem manjih valova.

jačina (bf)	brzina (m/s)	relativna učestalost	apsolutna učestalost	Hs (m)	Ts (s)
0	0,3-1,5	12,6	0,2165	0,1	1,2
1	1,6-3,3	10,9	0,1873	0,19	1,8
2	3,4-5,4	11,1	0,1907	0,48	2,55
3	5,5-7,9	8,8	0,1512	0,79	2,95
4	8,0-10,7	5,7	0,0979	1,15	3,4
5	10,8-13,8	6,7	0,1151	1,38	3 <i>,</i> 65
6	13,9-17,1	1,5	0,0258	1,87	3,95
7	17,2-20,7	0,7	0,0120	2,43	4,35
8	20,8-24,4	0,1	0,0017	2,99	4,65
9	24,5-28,4	0,1	0,0017	3,41	4,95

Tablica 35. Značajne valne visine za pojedine jačine vjetra iz smjera SE s pridruženim apsolutnim učestalostima pojavljivanja

Slika 46. Apsolutna učestalost pojavljivanja valnih visina

Dugoročna valna analiza provedena je na uzorku značajnih valnih visina *Hs* za kritični smjer SE i povratni period 50 godina. Za potrebe definiranja funkcije gustoće vjerojatnosti visine vala, korištena je "*Pareto*" distribucija s eksponencijalnim repom, koja se inače u hidrologiji koristi za predviđanje ekstremnih događaja. Slučajna varijabla X ima "*Pareto*" razdiobu s parametrima α , $x_m > 0$, ako joj je gustoća dana s

$$f(x) = \frac{\alpha x_m^{\alpha}}{x^{\alpha+1}}, x \ge x_m$$

gdje je:

α- parametar oblika,

 x_m - najmanja moguća vrijednost od X, tj. parametar mjere.

Kumulativna funkcija distribucije za Pareto slučajnu varijablu je:

$$F(x) = 1 - \left(\frac{x_m}{x}\right)^{\alpha}, x \ge x_m$$

Slika 47. Funkcija gustoće vjerojatnosti valnih visina

Slika 48. Kumulativna funkcija distribucije valnih visina

Slika 49. Valna visina za povratni period 50 godina

Mjerodavni parametri vala za povratni period 50 godina dobiveni "Pareto" distribucijom su:

Hs= 2.55 (m)

Ts= 4.3 (s)

Dionica koja se izmješta se cijelom duljinom nalazi u srednje dubokom moru (1/20<d/L<1/2)

U srednje dubokom moru se čestica vala kreće po eliptičnoj putanji (*Slika 50.*) zbog utjecaja dna koji se ne javlja u dubokom moru gdje se četica vala kreće kružnom putanjom.

Slika 50. Prikaz putanje čestice vala u srednje dubokom moru

Valna brzina predstavlja brzinu kojom se val propagira, a put koji val prijeđe unutar valnog perioda se naziva valnom duljinom. Veza valne brzine, duljine i perioda može se opisati formulom:

$$c = \frac{L}{T},$$

kako je potrebno uključiti utjecaj dubine mora onda je veza valne duljine i valne brzine:

$$c = \frac{L}{T} = \frac{gT}{2\pi} \tanh\left(\frac{2\pi d}{L}\right),$$

Pri čemu je $2\pi/L$ valni broj *k*, dok se valna duljina definira izrazom:

$$L = L_0 \cdot \tanh\left(\frac{2\pi d}{L}\right) = L_0 \cdot \tanh\left(kd\right)$$

Brzina grupe valova u dubokom moru određuje se pomoću sljedećeg izraza:?

$$c_{go} = \frac{1}{2}c_0$$

Brzina grupe valova u srednje dubokom moru:

$$c_g = \frac{1}{2} \cdot \left[1 + \frac{4\pi d / L}{\sinh\left(4\pi d / L\right)} \right] \cdot c$$

Koeficijent uplićavanja:

$$K_{S} = \sqrt{\frac{c_{go}}{c_{g}}}$$

Visina vala:

$$H_{VALA} = H_S \cdot K_S$$

Horizontalna brzina čestice vala:

$$u = \frac{H_{VALA}}{2} \cdot \frac{gT}{L} \cdot \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} \cdot \cos\phi$$

Horiontalno ubrzanje čestice vala:

$$a_x = \frac{g\pi H}{L} \cdot \frac{\cosh[2\pi(z+d)/L]}{\cosh(2\pi d/L)} \cdot \sin \phi$$

gdje je :

L-valna duljina (m)

T-period vala (s)

d-dubina mora (m n.m.)

Mjerodavni parametri vala za povratni period od 50 godina dobiveni su na temelju opisa varijacija značajnih valnih visina "Pareto" distribucijom,

Hs= 2.55 (m) (valna visina) i Ts= 4.3 (s) (period vala), koriste se u prethodno napisanim izrazima za brzinu vala (c), visinu vala (H_{VALA}) i za izračun horizontalne brzine čestice vala (u).

Iz prethodnih izraza vidljiva je ovisnost valne brzine i duljine o valnom broju i dubini. Za dubokovodni val funkcija tanh(kd) ide u 1, što povlači izraz za brzinu dubokovodnog vala:

$$c_0 = \frac{gT_0}{2\pi}$$

prelaskom u zonu srednje dubokog i plitkog mora, vrijednost dubine se smanjuje čime funkcija tanh(kd) ide u nulu pa se i valna brzina smanjuje smanjenjem dubine približavanjem vala obali. Iz *Slike 51*.vidljivo je da će se brzina čestice vala (*u*) smanjivat smanjenjem dubine (*d*).

Slika 51. Prikaz funkcija kosinus hiperbolni i sinus hiperbolni

Valna duljina se mijenja prema funkcionalnoj vezi sa valnom brzinom:

$$L = \frac{gT^2}{2\pi} \tanh\left(kd\right)$$

Kako je period konstantan, valna duljina ovisi o dubini, a pripadajuća vrijednost funkcije tanh(kd) ima sljedeće krajnje vrijednosti: za d=0m iznosi nula, a za $kd=\pi$ uzima vrijednost približnu jedinici pa se dobije izraz za valnu duljinu u dubokom moru:

$$L_0 = \frac{gT_0^2}{2\pi}$$

Na Slici 52. vidljiva je ta ovisnost.

Slika 52. Prikaz funkcije tangens hiperbolni

Valna visina je također ključan parametar vala koji se procjenjuje u elaboratu vjetrovalne klime, dugoročnim ili kratkoročnim prognozama ovisno o duljini raspoloživog vremenskog zapisa valnih visina ili brzina vjetra. Nakon što se definiraju vrijednosti valnog perioda, brzine, duljine i visine vala može se pristupiti daljnjem proračunu vezanom uz stabilnost dionice koja se izmješta.

1 (m)	1 (m)	a (m /a)	V	a (m/a)	LL (m)	11 (m (a)	_	(, , 2)	
L _{pretp.} (III)	L (M)	C (m/S)	N s	4 019		0 (m/s)	2 000	a (m/s)	1 15
23,303	23,303	5,419	0,914	4,018	2,334	1,250	3,900	1,020	4,15
23,334	23,334	5,440	0,914	4,020	2,334	1,230	3,950	1,000	4,2
23,743	23,743	5 508	0,913	4,020	2,332	1,101	4,130	1,720	4,4
24,072	24,072	5,550	0,913	4,027	2,332	1,130	4,330	1,001	4,0
24,302	24,302	5,070	0,913	4,023	2,332	1,002	4,330	1,302	4,8
24,075	24,075	5,750	0,914	4,021	2,334	1,058	4,750	1,510	5
24,940	24,940	5,602	0,914	4,014	2,330	0,990	4,930	1,435	5,2
25,200	25,200	5,602	0,910	4,005	2,550	0,950	5,150	1,390	5,4
25,449	25,449	5,918	0,917	2,994	2,542	0,910	5,550	1,541	5,0
25,077	25,077	5,971	0,918	3,961	2,545	0,862	5,550	1,209	5,8
25,892	25,892	6,021	0,920	3,967	2,349	0,848	5,750	1,239	6
26,093	26,093	6,068	0,922	3,951	2,354	0,816	5,950	1,192	6,2
20,283	20,283	6,112	0,924	3,935	2,359	0,784	6,150	1,140	6,4
20,400	26,400	6 102	0,920	2,910	2,304	0,755	6,550	1,105	6,0
20,027	20,027	6 2 2 0	0,928	2,900	2,309	0,720	6 750	1,001	0,8
26,783	26,785	6 263	0,930	3,863	2,373	0,033	6 950	0.983	72
27,067	27,067	6 295	0,332	3,805	2,301	0.648	7 150	0,905	7,2
27,007	27,007	6 3 2 5	0,934	3,876	2,300	0,624	7 350	0,540	7,4
27,135	27,135	6 352	0,937	3 807	2,352	0,624	7 550	0,911	7,8
27,313	27,313	6 379	0,935	3 788	2,330	0,000	7,550	0,877	8
27,420	27,420	6 4 0 3	0,041	3,760	2,404	0,576	7,750	0,044	8.2
27,532	27,552	6 4 2 6	0,944	2 751	2,410	0,550	9 150	0,813	8,2
27,030	27,030	6 4 4 7	0,940	2 722	2,410	0,555	8 350	0,762	8,4
27,721	27,721	6 467	0,940	3 715	2,422	0,915	8 550	0,733	8,8
27,886	27,800	6 / 85	0,951	3,698	2,420	0,430	8 750	0,724	0,5
27,000	27,000	6 502	0,955	3 681	2,435	0.459	8 950	0,670	9.2
28.028	28.028	6 518	0.957	3 665	2,133	0 441	9 150	0.645	9.4
28,020	28,020	6 5 3 3	0,959	3 649	2,444	0.425	9 350	0,620	9.6
28,051	28,051	6 5 4 7	0,955	3 63/	2,455	0,423	9 550	0,020	9.8
28,151	28,151	6 5 5 9	0,901	3,034	2,455	0 202	9,550	0,557	10
28,200	28,200	6 5 7 1	0,903	3,019	2,400	0,393	9,750	0,574	10 2
28 304	28 304	6 582	0,967	3 591	2,469	0.363	10 150	0,531	10,2
28,304	28,304	6 5 9 2	0,969	3 578	2,405	0,305	10,150	0,550	10,4
28,340	28,340	6.602	0,909	3,576	2,474	0,345	10,550	0,303	10,0
28,300	28,300	6.611	0,970	3 554	2,470	0,333	10,550	0,485	11
28,420	28,420	6 6 1 9	0,972	3 5/12	2,402	0,309	10,750	0.452	11 2
28,493	28,493	6.626	0,975	3,542	2,400	0 297	11 150	0,432	11,2
28,433	28,522	6 633	0,976	3 5 2 1	2,450	0.285	11,150	0,434	11,4
28,522	28,522	6.640	0,978	3 511	2,434	0.274	11,550	0,410	11,0
28,550	28,550	6 645	0 979	3 502	2,501	0.263	11 750	0 384	17
28,599	28,599	6.651	0,980	3,493	2,501	0.252	11,950	0.369	12.2
28.620	28.620	6,656	0.982	3,484	2,507	0.242	12,150	0.354	12.4
28.640	28.640	6.661	0.983	3.477	2.510	0.232	12,350	0.340	12.6
28.659	28.659	6,665	0.984	3,469	2,512	0.223	12,550	0.326	12.8
28.675	28.675	6.669	0.985	3.462	2.515	0.214	12.750	0.313	13

Tablica 36. Proračun potrebnih parametara za izračun horizontalne i vertikalne sile vala

Horizontalna sila uzrokovana valom koja djeluje na cjevovod definira se Morisonovom jednadžbom:

$$F_{H}^{VAL} = C_{H} \frac{\rho}{2} AU |U| + C_{I} \rho \frac{\pi D^{2}}{4} la_{H},$$

gdje je:

 C_H - koeficijent otpora oblika ovisan o kutu nailaska zrake vala u odnosu na os nivelete cjevovoda ispusta. Definira se s obzi rom na Reynoldsov broj koji u ovom slučaju iznosi Re = 175438.59 za kkv 1,12*10⁻⁶ [m²/s]). Usvojena vrijednost koeficijenta otpora oblika je 0,83.

 ρ - gustoća morske vode (kg/m³),

A - površina cijevi okomito na smjer nailaska vala(m²),

U - brzina vala (m/s); definira se ovisno o dubini prema linearnoj valnoj teoriji,

 C_{I} - koeficijent inercije ovisan o relativnom odnosu visine dne cijevi od morskog dna i vanjskog promjera cijevi (prema *Marine Wastewater Outfalls and Treatment Sytems;* Roberts et. Al; str. 244.). Usvojena vrijednost koeficijenta inercije je 2.25.

D - vanjski promjer cjevovoda podmorskog ispusta (m),

 a_{H} - akceleracija vala (m/s²); definira se ovisno o dubini prema linearnoj valnoj teoriji.

Vertikalna sila uzrokovana valom koja djeluje na cjevovod definira se kao:

$$F_V^{VAL} = C_V \frac{\rho}{2} A U^2,$$

gdje je:

 C_H - koeficijent otpora oblika ovisan o kutu nailaska zrake vala u odnosu na os nivelete cjevovoda ispusta. Definira se s obzirom na Reynoldsov broj koji u ovom slučaju iznosi Re = 175438.59 za kkv 1,12*10⁻⁶ [m²/s]). Usvojena vrijednost koeficijenta otpora oblika je 0,77.

 ρ - gustoća morske vode (kg/m³),

A - površina cijevi okomito na smjer nailaska vala(m²),

U - brzina vala (m/s); definira se ovisno o dubini prema linearnoj valnoj teoriji.

3.3 Kontrola težine i brojnosti opteživača

Minimalni potrebni broj opteživača uzduž dionice izmještene trase od stacionaže km 0+590,60 do prirubničkog spoja na km 0+745,52 (duljina dionice je 155,883 (m)) definiran je uslijed djelovanja:

-vlastite težine PEHD cijevi (p=955,00 kg/m³)

-vlastite težine sadržaja vode u cijevi

-vlastite težine primarnog opteživača

-vlastite težine sekundarnog opteživača

-uzgona na cijev, vodu u cijevi te primarne i sekundarne opteživače

-horizontalnog i vertikalnog djelovanja morskih struja (neovisno o dubini)

-horizontalnog djelovanja sile otpora i sile inercije uslijed djelovanja vala -vertikalna sila otpora uslijed djelovanja vala

(Djelovanja su prikazana na Slici 53.)

U obzir se uzima broj opteživača na postojećoj trasi te je za izmještenu trasu utvrđen minimalni potrebni broj opteživača.

Prvi kriterij je stabilnost u vertikalnom smjeru. Uzgon uzrokovan zrakom u cijevi nije uzet u obzir jer se konstruktivnim i hidrauličkim mjerama osigurala evakuacija zraka putem otvora promjera 1,5 cm na tjemenu cijevi na pozicijama karakterističnih točaka S-26 (0+640,00 km) i L-35 (0+682,11 km) (Uzdužni presjek budućeg stanja, prilog broj 4).

F1-težina betonskih opteživača F2-težina PEHD cijevi F3-težina vode u cijevi F4-uzgon na cijev i vodu u cijevi F5-uzgon na betonske opteživače F6-vertikalna sila vala i morskih struja F7-horizontalna sila vala i morskih struja F8-sila trenja FN-normalne sile od morskog dna

Slika 53. Grafički prikaz djelovanja na sekundarni opteživač

Stabilnost od isplivavanja definirana je koeficijentom sigurnosti:

$$Ks_{i} = \frac{G_{primarni}^{uronjeno} + G_{sekundarni}^{uronjeno}}{G_{PEHD+more}^{uronjeno} + F_{V}^{struja} + F_{V}^{val}}$$

Drugi kriterij je klizanje po morskom dnu. Kontrola se provodi samo za izmještenu dionicu cjevovoda podmorskog ispusta (sa pripadajućim kotama dna cijevi) kako bi se definirao minimalni broj opteživača.

Stabilnost od klizanja definira se koeficijentom sigurnosti:

$$Ks_{k} = \frac{f \cdot (G_{sekundarni}^{uronjeno} - G_{PEHD+more}^{uronjeno} - F_{V}^{struja} - F_{V}^{val})}{F_{H}^{struja} + F_{H}^{val}}$$

Kontrola koeficijenta stbilnosti obavljena je za raspon dubina od -4,15 (m n.m.) (najkritičnija kota na cijeloj duljini izmještanja) do -13,0 (m n.m.) sa ekvidistantnim razmakom od 0,2 (m). Koeficijent trenja s podlogom usvojen je f=0,80 (prema *Marine Wastewater Outfalls and Treatment Systems; Roberts et. Al; str. 260.*). Izborom koeficijenta trenja manjeg od jedan, za pjeskovitu podlogu i trapezoidni oblik opteživača, ide se na stranu sigurnosti što je jasno vidljivo iz izraza za koeficijent sigurnosti na klizanje.

Treći kriterij se odnosi na mogućnost prevrtanja cjevovoda uslijed djelovanja horizontalne komponente vala i morske struje. Stabilnost na prevrtanje se računa prema sljedećem izrazu:

$$Ks_{p} = \frac{(G_{sekundarni}^{uronjeno} - G_{PEHD+more}^{uronjeno} - F_{V}^{struja} - F_{V}^{val}) \cdot krak}{(F_{H}^{struja} + F_{H}^{val}) \cdot krak}$$

Dubina (mn.m.)	G _{cijev+more} (N/m')	G _{primarni} ^{uronjeni} (N/m')	G _{sekundarni} uronjeni (N/m')	Fv ^{val} (N/m')	F _v ^{struja} (N/m')	K _{si}
-4,15	-16,687	125,243	217,879	240,916	24,672	1,216
-4,20	-16,687	125,243	217,879	235,441	24,672	1,240
-4,40	-16,687	125,243	217,879	215,090	24,672	1,338
-4,60	-16,687	125,243	217,879	196,942	24,672	1,440
-4,80	-16,687	125,243	217,879	180,681	24,672	1,545
-5,00	-16,687	125,243	217,879	166,046	24,672	1,654
-5,20	-16,687	125,243	217,879	152,824	24,672	1,767
-5,40	-16,687	125,243	217,879	140,836	24,672	1,883
-5,60	-16,687	125,243	217,879	129,933	24,672	2,003
-5,80	-16,687	125,243	217,879	119,987	24,672	2,127
-6,00	-16,687	125,243	217,879	110,892	24,672	2,254
-6,20	-16,687	125,243	217,879	102,555	24,672	2,384
-6,40	-16,687	125,243	217,879	94,897	24,672	2,518
-6,60	-16,687	125,243	217,879	87,851	24,672	2,656
-6,80	-16,687	125,243	217,879	81,356	24,672	2,796
-7,00	-16,687	125,243	217,879	75,361	24,672	2,940
-7,20	-16,687	125,243	217,879	69,821	24,672	3,086
-7,40	-16,687	125,243	217,879	64,696	24,672	3,235
-7,60	-16,687	125,243	217,879	59,949	24,672	3,387
-7,80	-16,687	125,243	217,879	55,551	24,672	3,541
-8,00	-16,687	125,243	217,879	51,473	24,672	3,696
-8,20	-16,687	125,243	217,879	47,689	24,672	3,853
-8,40	-16,687	125,243	217,879	44,177	24,672	4,011
-8,60	-16,687	125,243	217,879	40,917	24,672	4,170
-8,80	-16,687	125,243	217,879	37,890	24,672	4,330
-9,00	-16,687	125,243	217,879	35,078	24,672	4,489
-9,20	-16,687	125,243	217,879	32,467	24,672	4,648
-9,40	-16,687	125,243	217,879	30,042	24,672	4,806
-9,60	-16,687	125,243	217,879	27,791	24,672	4,962
-9,80	-16,687	125,243	217,879	25,701	24,672	5,117
-10,00	-16,687	125,243	217,879	23,760	24,672	5,269
-10,20	-16,687	125,243	217,879	21,960	24,672	5,419
-10,40	-16,687	125,243	217,879	20,289	24,672	5,566
-10,60	-16,687	125,243	217,879	18,740	24,672	5,709
-10,80	-16,687	125,243	217,879	17,303	24,672	5,849
-11,00	-16,687	125,243	217,879	15,972	24,672	5,985
-11,20	-16,687	125,243	217,879	14,738	24,672	6,117
-11,40	-16,687	125,243	217,879	13,596	24,672	6,244
-11,60	-16,687	125,243	217,879	12,538	24,672	6,366
-11,80	-16,687	125,243	217,879	11,559	24,672	6,484
-12,00	-16,687	125,243	217,879	10,654	24,672	6,597
-12,20	-16,687	125,243	217,879	9,816	24,672	6,705
-12,40	-16,687	125,243	217,879	9,043	24,672	6,808
-12,60	-16,687	125,243	217,879	8,327	24,672	6,906
-12,80	-16,687	125,243	217,879	7,667	24,672	6,999
-13,00	-16,687	125,243	217,879	7,057	24,672	7,087

Tablica 37. Kontrola stabilnosti na isplivavanje izmještene dionice

Kontrola stabilnosti na isplivavanje ukazuje da je postojeći broj opteživača na navedenoj trasi duljine 155,883 (m) dovoljan s najnižim koeficijentom sigurnosti 1,216 u karakterističnoj točki S-26 na kojoj je zabilježena najmanja dubina dna cijevi podmorskog ispusta, -4,15 (m n.m.). Ova točka je ujedno i najkritičnija zbog najvećih sila uzrokovanih valovanjem.

Kontrola stabilnosti na klizanje pokazala je da postojeći broj sekundarnih opteživača nije dovoljan. U svrhu postizanja minimalnog koeficijenta sigurnosti na klizanje >1, u karakterističnoj točki S-26, odlučeno je da će se izmještena dionica računski podijeliti na tri segmenta kako bi se eventualno smanjio ukupno potreban broj sekundarnih opteživača. Trasa duljine 155,883 (m) se dijeli na dionice:

-od stacionaže oznaka L-32 do S-29 (109,855 (m) duljine); dionica1

-od stacionaže oznaka S-29 do L-38 (24,877 (m) duljine); dionica 2

-od stacionaže oznaka L-38 do L-40 (21,15 (m) duljine); dionica 3 (prema uzdužnom presjeku budućega stanja). Dionica 1 obuhvaća cjevovod na dubini od -4,15 (m) do -6,00 (m), dionica 2 od -6,20 (m) do -10,00 (m), a treća dionica obuhvaća cjevovod na dubini od -10,20 (m) do -13,00 (m).

Dubina (mn.m.)	G _{PEHD+more} uronjeni (N/m')	G _{primarni} ^{uronjeni} (N/m')	G _{sekundarni} ^{uronjeni} (N/m')	F _v ^{val} (N/m')	F _H ^{val} (N/m')	F _v ^{struja} (N/m')	F_{H}^{struja} (N/m')	K _{sk}	K _{sp}
-4,15	-16,687	125,243	894,378	240,916	457,468	24,672	26,934	1,011	2,294
-4,20	-16,687	125,243	894,378	235,441	449,268	24,672	26,934	1,038	2,354
-4,40	-16,687	125,243	894,378	215,090	418,556	24,672	26,934	1,146	2,600
-4,60	-16,687	125,243	894,378	196,942	390,822	24,672	26,934	1,256	2,851
-4,80	-16,687	125,243	894,378	180,681	365,654	24,672	26,934	1,370	3,109
-5,00	-16,687	125,243	894,378	166,046	342,713	24,672	26,934	1,487	3,374
-5,20	-16,687	125,243	894,378	152,824	321,718	24,672	26,934	1,607	3,646
-5,40	-16,687	125,243	894,378	140,836	302,433	24,672	26,934	1,730	3,925
-5,60	-16,687	125,243	894,378	129,933	284,659	24,672	26,934	1,856	4,213
-5,80	-16,687	125,243	894,378	119,987	268,227	24,672	26,934	1,987	4,509
-6,00	-16,687	125,243	894,378	110,892	252,994	24,672	26,934	2,121	4,813

Tablica 38. Kontrola stabilnosti na klizanje i prevrtanje na dionici 1

Iz Tablice 38. vidljivo je da je na dionici 1 potrebna težina uronjenih sekundarnih opteživača od 894,378 (N/m') kako bi koeficijent sigurnosti na klizanje bio veći od jedan. Na toj dionici opterećenje od postojećih sekundarnih opteživača (29 komada) iznosi 328,81(N/m'). Sa 52 dodatna sekundarna opteživača na svako 1,356 (m) bit će osigurana stabilnost cjevovoda na klizanje.

Dubina (mn.m.)	uronjeni G _{PEHD+more}	G _{primarni} ^{uronjeni} (N/m')	G _{sekundarni} ^{uronjeni} (N/m')	F _v ^{val} (N/m')	F _v ^{struja} (N/m')	F _H ^{struja} (N/m')	F _H ^{val} (N/m')	K _{sk}	K _{sp}
-6,20	-16,687	125,243	536,353	102,555	24,672	26,934	238,836	1,181	2,681
-6,40	-16,687	125,243	536,353	94,897	24,672	26,934	225,647	1,267	2,876
-6,60	-16,687	125,243	536,353	87,851	24,672	26,934	213,336	1,356	3,076
-6,80	-16,687	125,243	536,353	81,356	24,672	26,934	201,822	1,447	3,283
-7,00	-16,687	125,243	536,353	75,361	24,672	26,934	191,034	1,540	3,495
-7,20	-16,687	125,243	536,353	69,821	24,672	26,934	180,912	1,636	3,714
-7,40	-16,687	125,243	536,353	64,696	24,672	26,934	171,401	1,736	3,939
-7,60	-16,687	125,243	536,353	59,949	24,672	26,934	162,453	1,838	4,170
-7,80	-16,687	125,243	536,353	55,551	24,672	26,934	154,025	1,943	4,409
-8,00	-16,687	125,243	536,353	51,473	24,672	26,934	146,080	2,051	4,654
-8,20	-16,687	125,243	536,353	47,689	24,672	26,934	138,582	2,162	4,906
-8,40	-16,687	125,243	536,353	44,177	24,672	26,934	131,502	2,276	5,166
-8,60	-16,687	125,243	536,353	40,917	24,672	26,934	124,811	2,394	5,432
-8,80	-16,687	125,243	536,353	37,890	24,672	26,934	118,484	2,515	5,706
-9,00	-16,687	125,243	536,353	35,078	24,672	26,934	112,499	2,639	5,988
-9,20	-16,687	125,243	536,353	32,467	24,672	26,934	106,833	2,766	6,277
-9,40	-16,687	125,243	536,353	30,042	24,672	26,934	101,469	2,897	6,574
-9,60	-16,687	125,243	536,353	27,791	24,672	26,934	96,387	3,031	6,878
-9,80	-16,687	125,243	536,353	25,701	24,672	26,934	91,573	3,168	7,189
-10,00	-16,687	125,243	536,353	23,760	24,672	26,934	87,010	3,309	7,508

Tablica 39. Kontrola stabilnosti na klizanje i prevrtanje na dionici 2

Na dionici 2 potrebna težina uronjenih sekundarnih opteživača iznosi 536,353 (N/m') (*Tablica 39*). Kako su svi sekundarni opteživači, koji su bili smješteni na dionici koja se izmješta, postavljeni na dionicu 1, tako je na ovu dionicu potrebno postaviti 10 dodatnih sekundarnih opteživača. Dionica je duga 24,877 (m), pa se na svaka 2,488 (m) stavlja po jedan dodatni sekundarni opteživač, što rezultira sa 10 dodatna opteživača na ovoj dionici.

Dubina (mn.m.)	G _{PEHD+more} uronjeni	G _{primarni} ^{uronjeni} (N/m')	G _{sekundarni} ^{uronjeni} (N/m')	Fv ^{val} (N/m')	Fv ^{struja} (N/m')	F _H ^{struja} (N/m')	F _H ^{val} (N/m')	Ksk	K _{sp}
-10,20	-16,687	125,243	229,407	21,960	24,672	26,934	82,684	1,2121	2,7506
-10,40	-16,687	125,243	229,407	20,289	24,672	26,934	78,583	1,2719	2,8862
-10,60	-16,687	125,243	229,407	18,740	24,672	26,934	74,694	1,3328	3,0244
-10,80	-16,687	125,243	229,407	17,303	24,672	26,934	71,006	1,3947	3,1649
-11,00	-16,687	125,243	229,407	15,972	24,672	26,934	67,507	1,4576	3,3077
-11,20	-16,687	125,243	229,407	14,738	24,672	26,934	64,188	1,5216	3,4528
-11,40	-16,687	125,243	229,407	13,596	24,672	26,934	61,039	1,5864	3,6000
-11,60	-16,687	125,243	229,407	12,538	24,672	26,934	58,051	1,6522	3,7491
-11,80	-16,687	125,243	229,407	11,559	24,672	26,934	55,215	1,7187	3,9002
-12,00	-16,687	125,243	229,407	10,654	24,672	26,934	52,525	1,7860	4,0529
-12,20	-16,687	125,243	229,407	9,816	24,672	26,934	49,971	1,8541	4,2073
-12,40	-16,687	125,243	229,407	9,043	24,672	26,934	47,547	1,9227	4,3631
-12,60	-16,687	125,243	229,407	8,327	24,672	26,934	45,246	1,9919	4,5201
-12,80	-16,687	125,243	229,407	7,667	24,672	26,934	43,062	2,0616	4,6783
-13.00	-16 687	125 2/13	229 407	7.057	24 672	26.934	10 988	2 1318	/ 8375

Tablica 40. Kontrola stabilnosti na klizanje i prevrtanje na dionici 3

Na dionici 3 potrebna težina uronjenih sekundarnih opteživača je 229,407 (N/m'). Stoga se sa 4 dodatna opteživača osigurava stabilnost na klizanje a time i na prevrtanje.

3.3.1 Proračun koeficijenata sigurnosti po stacionažama

Duljina dionice koja se izmješta je 155,883 (m) te je na toj duljini proveden proračun koeficijenata stabilnosti i po stacionažama radi praktičnosti po pitanju rasporeda opteživača po Izvođaču. U *Tablici 41*. su prikazani parametri vala i horizontalne i vertikalne komponente sile vala za svaku definiranu stacionažu.

Stacionaža (m)	Dubina mora (m n. m.)	More	L _{pret} (m)	L (m)	c (m/s)	c _g (m/s)	Ks	H _{vala} (m)	U (m/s)	z (m n.m.)	a (m/s²)	Fh ^{val} (N/m')	Fv ^{val} (N/m')
0+590.60	6,93	srednje duboko	26,7299	26,7299	6,2163	3,8883	0,9291	2,3730	0,71	6,680	1,035	194,731	77,405
0+600.00	6,45	srednje duboko	26,3282	26,3282	6,1228	3,9308	0,9241	2,3602	0,78	6,200	1,135	222,491	93,081
0+620.00	5,33	srednje duboko	25,1174	25,1174	5,8412	4,0082	0,9151	2,3373	0,97	5,080	1,416	309,002	144,902
0+640.00	4,15	srednje duboko	23,3030	23,3030	5,4193	4,0184	0,9140	2,3343	1,25	3,900	1,826	457,468	240,916
0+655,89	5,05	srednje duboko	24,7436	24,7436	5,7543	4,0194	0,9139	2,3340	1,03	4,800	1,501	337,292	162,616
0+660.00	5,28	srednje duboko	25,0529	25,0529	5,8263	4,0105	0,9149	2,3366	0,98	5,030	1,431	313,811	147,890
0+671.10	5,27	srednje duboko	25,0399	25,0399	5,8232	4,0110	0,9148	2,3365	0,98	5,020	1,434	314,785	148,496
0+680.00	4,51	srednje duboko	23,9267	23,9267	5,5643	4,0268	0,9130	2,3319	1,15	4,260	1,684	402,962	204,858
0+682.11	4,48	srednje duboko	23,8773	23,8773	5,5529	4,0266	0,9131	2,3319	1,16	4,230	1,695	407,130	207,586
0+700.00	5,95	srednje duboko	25,8393	25,8393	6,0091	3,9704	0,9195	2,3484	0,86	5,700	1,251	256,697	113,091
0+706.10	6,79	srednje duboko	26,6191	26,6191	6,1905	3,9010	0,9276	2,3692	0,73	6,540	1,063	202,379	81,668
0+709.48	7,81	srednje duboko	27,3213	27,3213	6,3538	3,8059	0,9392	2,3986	0,60	7,560	0,875	153,617	55,340
0+720.00	8,74	srednje duboko	27,7815	27,7815	6,4608	3,7207	0,9498	2,4259	0,50	8,490	0,733	120,345	38,774
0+724.54	9,64	srednje duboko	28,1036	28,1036	6,5357	3,6462	0,9595	2,4506	0,42	9,390	0,334	65,442	27,360
0+734.95	11,24	srednje duboko	28,4672	28,4672	6,6203	3,5401	0,9738	2,4870	0,31	10,990	0,241	41,500	14,502
0+740.00	11,77	srednje duboko	28,5459	28,5459	6,6386	3,5126	0,9776	2,4967	0,28	11,520	0,216	35,769	11,701
0+745.52	12,24	srednje duboko	28,6031	28,6031	6,6519	3,4912	0,9806	2,5044	0,25	11,990	0,196	31,387	9,657

Tablica 41. Proračun horizontalne i vertikalne sile vala

Horizontalne i vertikalne komponente sile struja su definirane u *Tablici 34*, a vrijednosti koeficijenata sigurnosti se računaju prema izrazima u poglavlju 3.3. U *Tablici 42* su prikazani vrijednosti koeficijenta sigurnosti na isplivavanje.

Stacionaža (m)	Dubina mora (m n. m.)	G _{uronjeno} (N/m')	G _{primarni} (N/m')	G _{sekundarni} (N/m')	Fv ^{struja} (N/m')	Fv ^{val} (N/m')	Ks _i
0+590.60	-6,93	16,684	125,243	217,879	24,672	77,405363	2,889
0+600.00	-6,45	16,684	125,243	217,879	24,672	93,080889	2,552
0+620.00	-5,33	16,684	125,243	217,879	24,672	144,901600	1,842
0+640.00	-4,15	16,684	125,243	217,879	24,672	240,915997	1,216
0+655,89	-5,05	16,684	125,243	217,879	24,672	162,615611	1,682
0+660.00	-5,28	16,684	125,243	217,879	24,672	147,889875	1,813
0+671.10	-5,27	16,684	125,243	217,879	24,672	148,496222	1,807
0+680.00	-4,51	16,684	125,243	217,879	24,672	204,858150	1,394
0+682.11	-4,48	16,684	125,243	217,879	24,672	207,586060	1,378
0+700.00	-5,95	16,684	125,243	217,879	24,672	113,091451	2,222
0+706.10	-6,79	16,684	125,243	217,879	24,672	81,668370	2,789
0+709.48	-7,81	16,684	125,243	217,879	24,672	55,339943	3,548
0+720.00	-8,74	16,684	125,243	217,879	24,672	38,774423	4,282
0+724.54	-9,64	16,684	125,243	217,879	24,672	27,360310	4,993
0+734.95	-11,24	16,684	125,243	217,879	24,672	14,502415	6,143
0+740.00	-11,77	16,684	125,243	217,879	24,672	11,701103	6,467
0+745.52	-12,24	16,684	125,243	217,879	24,672	9,656726	6,726

Tablica 42. Kontrola stabilnosti ispusta na isplivavanje po stacionažama

Kontrola stabilnosti na klizanje će se provesti na isti način kao u prethodnom poglavlju. Izmješteni dio ispusta će se podijeliti na tri dionice po duljini cjevovoda.

-od stacionaže L-32 (0+590,60 m) do S-29 (0+700,00 m), 109,855 (m) duljine; dionica1
-od stacionaže S-29 (0+700,00 m) do L-38(0+724,54 m), 24,877 (m) duljine; dionica 2
-od stacionaže L-38 (0+724,54 m) do L-40 (0+745,52 m), 21,15 (m) duljine; dionica 3 (prema uzdužnom presjeku budućega stanja)

Fh^{struja} Dubina mora **G**_{sekundarni} Guronjeno Stacionaža (m) Fh^{val} (N/m') Ks_k Ks_p (m n. m.) (N/m') (N/m') <u>(N/m')</u> 0+590.60 194,731 2,799 6,352 -6,93 16,684 894,378 26,934 0+600.00 16<u>,6</u>84 2,437 5,531 -6,45 894,378 26,934 222,491 0+620.00 -5,33 16,684 894,378 26,934 309,002 1,686 3,827 0+640.00 -4,15 894,378 26,934 457,468 1,011 2,294 16,684 3,441 0+655,89 -5,05 16,684 894,378 26,934 337,292 1,516 -5,28 26,934 1,656 3,757 0+660.00 894,378 16,684 313,811 1,649 3,743 0+671.10 -5,27 16,684 894,378 26,934 314,785 2,737 0+680.00 -4,51 16,684 894,378 26,934 402,962 1,206 0+682.11 -4,48 16,684 894,378 26,934 407,130 1,190 2,699 4,736 0+700.00 -5,95 894,378 26,934 256,697 2,087 16,684

Tablica 43. Kontrola stabilnosti ispusta na klizanje i prevrtanje po stacionažama na dionici 1

Iz *Tablice 43.* se zaključuje kako se podatci podudaraju sa podatcima u *Tablici 38* u prethodnom poglavlju, pa je konačno potreban broj dodatnih sekundarnih opteživača na ovoj dionici 52 uz 29 postojećih sekundarnih opteživača. Ukupan broj sekundarnih opteživača na ovoj dionici je 81 komad.

Stacionaža (m)	Dubina mora (m n. m.)	G _{uronjeno} (N/m')	G _{sekundarni} (N/m')	Fh ^{struja} (N/m')	Fh ^{val} (N/m')	Ks _k	Ks _p
0+700.00	-5,95	16,684	536,353	26,934	256,697	1,077	2,4444
0+706.10	-6,79	16,684	536,353	26,934	202,379	1,442	3,272168
0+709.48	-7,81	16,684	536,353	26,934	153,617	1,948	4,420636
0+720.00	-8,74	16,684	536,353	26,934	120,345	2,478	5,623475
0+724.54	-9,64	16,684	536,353	26,934	65,442	4,050	9,190109

Tablica 44. Kontrola stabilnosti ispusta na klizanje i prevrtanje po stacionažama na dionici 2

Na dionici 2 (*Tablica 44*.) se također uočava podudaranje podataka obaju načina proračuna (po dubinama i po stacionažama) te je potreban broj dodatnih sekundarnih opteživača usvojen 10 komada

Stacionaža (m)	Dubina mora (m	G _{uronjeno} (N/m')	G _{sekundarni} (N/m')	Fh ^{struja} (N/m')	Fh ^{val} (N/m')	Ks _k	Ks _p
0+724.54	-9,64	16,684	229,407	26,934	45,959	1,392	3,158
0+734.95	-11,24	16,684	229,407	26,934	34,964	2,029	4,604
0+740.00	-11,77	16,684	229,407	26,934	31,946	2,250	5,106
0+745.52	-12,24	16,684	229,407	26,934	29,492	2,447	5,553

Tablica 45. Kontrola stabilnosti is	pusta na klizanie i i	prevrtanie po s	stacionažama na	dionici 3
1 00 0000 00 120000 000 0000 0000000000		<i>p</i> . <i>e i</i> . <i>i e i p o b</i>		

Kontrola stabilnosti na klizanje i prevrtanje pokazuje da je broj dodatnih sekundarnih opteživača od 4 komada dovoljan na dionici 3 (*Tablica 45.*)

Na *Slici 54. i 55.* su prikazani dijagrami koeficijenata stabilnosti u ovisnosti o dubini (*Slika 54.*) i pripadajućim stacionažama (*Slika 55.*).

Slika 54. Grafički prikaz koeficijenata sigurnosti po pripadajućim dubinama

Slika 55. Grafički prikaz koeficijenata sigurnosti po pripadajućim stacionažama

3.4 Kontrola naprezanja cjevovoda

3.4.1 Kontrola naprezanja uslijed promjene temperature i unutrašnjeg tlaka

Kako izmještena dionica cjevovoda podmorskog ispusta ostaje na istoj mikrolokaciji (pretpostavka o znatnijoj promjeni temperature) te je hidrauličkim proračunom dokazano da je izloženost unutrašnjem tlaku zanemarivo promjenjiva,tako nema potrebe za kontrolom naprezanja u ovom slučaju.

3.4.2 Kontrola naprezanja uslijed djelovanja uzgona na cijev dionica 1

Uzgon je sila koja djeluje na uronjeno tijelo suprotno od smjera gravitacije, olakšavajući težinu uronjenog tijela za težinu istisnute vode. Uzgon, zbog nešto manje gustoće PEHD cijevi u odnosu na vodu u cijevi i more, djeluje prema površini mora. Moment savijanja i pripadajući moment inercije poprečnog presjeka cjevovoda definirani su:

$$\sigma = M \cdot \frac{D_v}{(2 \cdot I)}$$

gdje je:

$$M$$
 - moment savijanja, $M = \frac{W \cdot l^2}{12}$

I - moment inercije,
$$I = \frac{\pi}{64} \cdot \left(D_v^4 - D_u^4\right)$$

Slika 56. Dijagram reznih sila uslijed horizontalne sile vala

Sekundarni opteživači predstavljaju oslonce linijskog sustava. Kontrola naprezanja provedena je za slučaj predviđenog rasporeda sekundarnih opteživača na dionicama 1,2,3 i za slučaj jednog otkačenog opteživača na istim dionicama izmještene trase, što rezultira dvostruko većim rasponom.

L _{dionice}	109,855	(m)	L _{dionice}	109,855	(m)
$\mathbf{\Delta}_{sek_opteživača}$	1,356	(m)	$\Delta_{sek_opte\check{z}iva\check{c}a}$	2,74	(m)
N _{sek_opteživača}	81	kom	N _{sek_opteživača}	81	kom
G _{cijevi}	67,922	(N/m/)	G _{cijevi}	67,922	(N/m/)
G vode u cijevi	410,422	(N/m/)	G _{vode u cijevi}	410,422	(N/m/)
U _{PEHD+voda}	495,031	(N/m/)	U _{PEHD+voda}	495,031	(N/m/)
URONJENI G _{CIJEV+PEHD}	-16,687	(N/m/)	URONJENI G _{CIJEV+PEHD}	-16,687	(N/m/)
M _{MAX}	2,557	(Nm)	M _{MAX}	10,440	(Nm)
1	5,24598E-05	(m ⁴⁾	I	5,24598E-05	(m ⁴⁾
σ	6092,456	(N/m ²)	σ	24875,633	(N/m ²)

Tablica 46. Proračun naprezanja za djelovanje uzgona na cjevovod (svi opteživači (lijevo) i jedan otkačen (desno))

3.4.3 Kontrola naprezanja uslijed djelovanja morskih struja na cjevovod na dionici 1

Proračun naprezanja za djelovanje morskih struja na cjevovod obavljen je na isti način kao za slučaj djelovanja uzgona (za propisan raspored sekundarnih opteživača i za slučaj jednog otkačenog opteživača).

L _{dionice}	109,855	(m)	L _{dionice}	109,855	(m)
Δ _{sek_opteživača}	1,356	(m)	$\mathbf{\Delta}_{sek_opte\check{z}iva\check{c}a}$	2,74	(m)
N _{sek_opteživača}	81	kom	N _{sek_opteživača}	81	kom
G _{cijevi}	67,922	(N/m/)	G _{cijevi}	67,922	(N/m/)
F _H ^{STRUJA}	26,934	(N/m/)	F _H ^{STRUJA}	26,934	(N/m/)
M _{MAX}	4,127	(Nm)	M _{MAX}	16,851	(Nm)
I	5,24598E-05	(m ⁴⁾	1	5,24598E-05	(m ⁴⁾
σ	9833,679	(N/m ²)	σ	40151,131	(N/m ²)

Tablica 47. Proračun naprezanja za djelovanje horizontalne komponente sile morske struje na cjevovod (svi opteživači (lijevo) i jedan otkačen (desno))

Tablica 48. Proračun naprezanja za djelovanje vertikalne komponente sile morske struje na cjevovod (svi opteživači (lijevo) i jedan otkačen (desno))

L _{dionice}	109,855	(m)	L _{dionice}	109,855	(m)
$\mathbf{\Delta}_{sek_opteživača}$	1,356	(m)	Δ _{sek_opteživača}	2,74	(m)
N _{sek_opteživača}	81	kom	N _{sek_opteživača}	81	kom
G _{cijevi}	67,922	(N/m/)	G _{cijevi}	67,922	(N/m/)
F _V ^{STRUJA}	24,672	(N/m/)	F _V ^{STRUJA}	24,672	(N/m/)
M _{MAX}	3,780	(Nm)	M _{MAX}	15,436	(Nm)
I	5,24598E-05	(m ⁴⁾	I	5,24598E-05	(m ⁴⁾
σ	9007,950	(N/m ²)	σ	36779,662	(N/m ²)

3.4.4 Kontrola naprezanja uslijed djelovanja valova na cjevovod na dionici 1

Proračun naprezanja za djelovanje valova napravljen je na isti način kao za slučaj djelovanja uzgona (za propisan raspored sekundarnih opteživača i za slučaj jednog otkačenog opteživača).

L _{dionice}	109,855	(m)	L _{dionice}	109,855	(m)
Δ _{sek_opteživača}	1,356	(m)	Δ _{sek_opteživača}	2,74	(m)
N _{sek_opteživača}	81	kom	N _{sek_opteživača}	81	kom
G _{cijevi}	67,922	(N/m/)	G _{cijevi}	67,922	(N/m/)
	376,786	(N/m/)	F _H ^{VAL}	376,786	(N/m/)
M _{MAX}	57,734	(Nm)	M _{MAX}	235,730	(Nm)
I	5,24598E-05	(m ⁴⁾	1	5,24598E-05	(m ⁴⁾
σ	137567,661	(N/m ²)	σ	561691,820	(N/m²)

Tablica 49. Proračun naprezanja za djelovanje horizontalne komponente sile vala na cjevovod

Tablica 50. Proračun naprezanja za djelovanje vertikalne komponente sile vala na cjevovod

L _{dionice}	109,855	(m)	L _{dionice}	109,855	(m)
Δ _{sek_opteživača}	1,356	(m)	$\Delta_{sek_opteživača}$	2,74	(m)
N _{sek_opteživača}	81	kom	N _{sek_opteživača}	81	kom
G _{cijevi}	67,922	(N/m/)	G _{cijevi}	67,922	(N/m/)
F _V ^{VAL}	240,916	(N/m/)	F _V ^{VAL}	240,916	(N/m/)
M _{MAX}	36,915	(Nm)	M _{MAX}	150,725	(Nm)
I	5,24598E-05	(m ⁴⁾	I	5,24598E-05	(m ⁴⁾
σ	87960,414	(N/m^2)	σ	359144,329	(N/m ²)

3.4.5 Kontrola naprezanja uslijed djelovanja uzgona na cijev dionica 2

Tablica 51. Proračun naprezanja za djelovanje uzgona na cjevovod (svi opteživači (lijevo) i jedan otkačen (desno))

L _{dionice}	24,877	(m)	L _{dionice}	24,877	(m)
Δ _{sek_opteživača}	2,4877	(m)	$\mathbf{\Delta}_{sek_opteživača}$	4,9754	(m)
N _{sek_opteživača}	10	kom	N _{sek_opteživača}	10	kom
G _{cijevi}	67,922	(N/m/)	G _{cijevi}	67,922	(N/m/)
G _{vode u cijevi}	410,422	(N/m/)	G _{vode u cijevi}	410,422	(N/m/)
U _{PEHD+voda}	495,031	(N/m/)	U _{PEHD+voda}	495,031	(N/m/)
URONJENI G _{CIJEV+PEHD}	-16,687	(N/m/)	URONJENI G _{CIJEV+PEHD}	-16,687	(N/m/)
M _{MAX}	8,606	(Nm)	M _{MAX}	34,423	(Nm)
Ι	5,24598E-05	(m ⁴⁾	1	5,24598E-05	(m ⁴⁾
σ	20505,437	(N/m²)	σ	82021,747	(N/m ²)

3.4.6 Kontrola naprezanja uslijed djelovanja morskih struja na cjevovod na dionici 2

L _{dionice}	24,877	(m)	L _{dionice}	24,877	(m)
$\Delta_{sek_opteživača}$	2,4877	(m)	Δ _{sek_opteživača}	4,9754	(m)
N _{sek_opteživa}	10	kom	N _{sek_opteživa}	10	kom
G _{cijevi}	67,922	(N/m/)	G _{cijevi}	67,922	(N/m/)
F _H ^{STRUJA}	26,934	(N/m/)	F _H ^{STRUJA}	26,934	(N/m/)
M _{MAX}	13,890	(Nm)	M _{MAX}	55,561	(Nm)
I	5,24598E-05	(m ⁴⁾	I	5,24598E-05	(m ⁴⁾
σ	33097,308	(N/m ²)	σ	132389,231	(N/m ²)

Tablica 52. Proračun naprezanja za djelovanje horizontalne komponente sile morske struje na cjevovod (svi opteživači (lijevo) i jedan otkačen (desno))

Tablica 53. Proračun i	naprezanja za djelovar	nje vertikalne	komponente si	ile morske s	truje na cjevovod
	(svi opteživači (lij	ievo) i jedan o	otkačen (desno))	

L _{dionice}	24,877	(m)	L _{dionice}	24,877	(m)
$\mathbf{\Delta}_{sek_opteživača}$	2,4877	(m)	Δ _{sek_opteživača}	4,9754	(m)
N _{sek_opteživa}	10	kom	N _{sek_opteživa}	10	kom
G _{cijevi}	67,922	(N/m/)	G _{cijevi}	67,922	(N/m/)
F v ^{STRUJA}	24,672	(N/m/)	F V ^{STRUJA}	24,672	(N/m/)
M _{MAX}	12,724	(Nm)	M _{MAX}	50,895	(Nm)
I	5,24598E-05	(m ⁴⁾	I	5,24598E-05	(m ⁴⁾
σ	30318,144	(N/m ²)	σ	121272,578	(N/m ²)

3.4.7 Kontrola naprezanja uslijed djelovanja valova na cjevovod na dionici 2

Tablica 54. Proračun naprezanja za djelovanje horizontalne komponente sile vala na cjevovod

L _{dionice}	24,877	(m)	L _{dionice}	24,877	(m)
$\mathbf{\Delta}_{sek_opteživača}$	2,4877	(m)	$\mathbf{\Delta}_{sek_opte extsf{ziva} extsf{ca}}$	4,9754	(m)
N _{sek_opteživača}	10	kom	N _{sek_opteživača}	10	kom
G _{cijevi}	67,922	(N/m/)	G _{cijevi}	67,922	(N/m/)
F _H ^{VAL}	238,836	(N/m/)		238,836	(N/m/)
M _{MAX}	123,173	(Nm)	M _{MAX}	492,691	(Nm)
I	5,24598E-05	(m ⁴⁾	I	5,24598E-05	(m ⁴⁾
σ	293493,149	(N/m²)	σ	1173972,594	(N/m ²)
L _{dionice}	24,877	(m)	L _{dionice}	24,877	(m)
-------------------------------------	-------------	------------------	-------------------------------------	-------------	---------------------
$\mathbf{\Delta}_{sek_opteživača}$	2,4877	(m)	$\mathbf{\Delta}_{sek_opteživača}$	4,9754	(m)
N _{sek_opteživača}	10	kom	N _{sek_opteživača}	10	kom
G _{cijevi}	67,922	(N/m/)	G _{cijevi}	67,922	(N/m/)
	102,555	(N/m/)	F _V ^{VAL}	102,555	(N/m/)
M _{MAX}	52,890	(Nm)	M _{MAX}	211,559	(Nm)
I	5,24598E-05	(m ⁴⁾	I	5,24598E-05	(m ⁴⁾
σ	126024,603	(N/m²)	σ	504098,411	(N/m ²)

Tablica 55. Proračun naprezanja za djelovanje vertikalne komponente sile vala na cjevovod

3.4.8 Kontrola naprezanja uslijed djelovanja uzgona na cijev dionica 3

Tablica 56. Proračun naprezanja za djelovanje uzgona na cjevovod (svi opteživači (lijevo) i jedan otkačen (desno))

L _{dionice}	21,15	(m)	L _{dionice}	21,15	(m)
$\mathbf{\Delta}_{sek_opteživača}$	5,2875	(m)	$\Delta_{sek_opteživača}$	10,575	(m)
N _{sek_opteživača}	4	kom	N _{sek_opteživača}	4	kom
G _{cijevi}	67,922	(N/m/)	G _{cijevi}	67,922	(N/m/)
G _{vode u cijevi}	410,422	(N/m/)	G _{vode u cijevi}	410,422	(N/m/)
U _{PEHD+voda}	495,031	(N/m/)	U _{PEHD+voda}	495,031	(N/m/)
URONJENI G _{CIJEV+PEHD}	-16,687	(N/m/)	URONJENI G _{CIJEV+PEHD}	-16,687	(N/m/)
M _{MAX}	38,877	(Nm)	M _{MAX}	155,507	(Nm)
I	5,24598E-05	(m ⁴⁾	1	5,24598E-05	(m ⁴⁾
σ	92634,715	(N/m²)	σ	370538,862	(N/m ²)

3.4.9 Kontrola naprezanja uslijed djelovanja morskih struja na cjevovod na dionici 3

Tablica 57. Proračun naprezanja za djelovanje horizontalne komponente sile morske struje na cjevovod (svi opteživači (lijevo) i jedan otkačen (desno))

L _{dionice}	21,15	(m)	L _{dionice}	21,15	(m)
$\mathbf{\Delta}_{sek_opteživača}$	5,2875	(m)	Δ _{sek_opteživača}	10,575	(m)
N _{sek_opteživa}	4	kom	N _{sek_opteživa}	4	kom
G _{cijevi}	67,922	(N/m/)	G _{cijevi}	67,922	(N/m/)
F _H ^{STRUJA}	26,934	(N/m/)	F_H STRUJA	26,934	(N/m/)
M _{MAX}	62,750	(Nm)	M _{MAX}	251,000	(Nm)
I	5,24598E-05	(m ⁴⁾	1	5,24598E-05	(m ⁴⁾
σ	149519,355	(N/m ²)	σ	598077,421	(N/m^2)

L _{dionice}	21,15	(m)	L dionice	21,15	(m)
∆ _{sek_opteživača}	5,2875	(m)	Δ _{sek_opteživača}	10,575	(m)
N _{sek_opteživa}	4	kom	N _{sek_opteživa}	4	kom
G _{cijevi}	67,922	(N/m/)	G _{cijevi}	67,922	(N/m/)
F _V ^{STRUJA}	24,672	(N/m/)	F _V ^{STRUJA}	24,672	(N/m/)
M _{MAX}	57,481	(Nm)	M _{MAX}	229,924	(Nm)
I	5,24598E-05	(m ⁴⁾	I	5,24598E-05	(m ⁴⁾
σ	136964,295	(N/m ²)	σ	547857,180	(N/m^2)

Tablica 58. Proračun naprezanja za djelovanje vertikalne komponente sile morske struje na cjevovod (svi opteživači (lijevo) i jedan otkačen (desno))

3.4.10 Kontrola naprezanja uslijed djelovanja valova na cjevovod na dionici 3

Tablica 59. Proračun naprezanja za djelovanje horizontalne komponente sile vala na cjevovod

L _{dionice}	21,15	(m)	L _{dionice}	21,15	(m)
Δ _{sek_opteživača}	5,2875	(m)	Δ _{sek_opteživača}	10,575	(m)
N _{sek_opteživača}	4	kom	N _{sek_opteživača}	2	kom
G _{cijevi}	67,922	(N/m/)	G _{cijevi}	67,922	(N/m/)
F _H ^{VAL}	82,684	(N/m/)		82,684	(N/m/)
M _{MAX}	192,638	(Nm)	M _{MAX}	770,553	(Nm)
1	5,24598E-05	(m ⁴⁾	1	5,24598E-05	(m ⁴⁾
σ	459014,350	(N/m ²)	σ	1836057,401	(N/m ²)

Tablica 60. Proračun naprezanja za djelovanje vertikalne komponente sile vala na cjevovod

L _{dionice}	21,15	(m)	L _{dionice}	21,15	(m)
$\mathbf{\Delta}_{sek_opteživača}$	5,2875	(m)	Δ _{sek_opteživača}	10,575	(m)
N _{sek_opteživača}	4	kom	N _{sek_opteživača}	2	kom
G _{cijevi}	67,922	(N/m/)	G _{cijevi}	67,922	(N/m/)
F _V ^{VAL}	-6,200	(N/m/)	Fv ^{VAL}	-6,200	(N/m/)
M _{MAX}	14,445	(Nm)	M _{MAX}	57,779	(Nm)
I	5,24598E-05	(m ⁴⁾	1	5,24598E-05	(m ⁴⁾
σ	34418,719	(N/m²)	σ	137674,875	(N/m ²)

Dimenzioniranje stijenki PEHD cijevi vrši se prema dozvoljenom naprezanju kod trajanja opterećenja u vremenu od 50 godina i uz faktor sigurnosti od 1,6. Dozvoljeno naprezanje za

MRS 100 je 620 (N/cm²), uz uvjet da je temperatura u cijevi ne veća od 20°C. Dozvoljeno naprezanje je 496 (N/cm²) uz minimalni faktor sigurnosti od 1,25.

Pretpostavka je da će cjevovodom teći voda temperature do 30°C, pa je dozvoljeno naprezanje 400 (N/cm²), $\sigma_{dop} = 400 \left[\frac{N}{cm^2}\right]$.

U obzir se treba uzeti i moguće smanjenje nosivosti vara te se tada tražena čvrstoća dobiva uz σ =0,95 te je tada dopuštena nosivost i manja.

3.4.11 Kontrola dopuštenih naprezanja

Provest će se kontrola dopuštenih naprezanja za međusobne kombinacije istovremene pojave opterećenja uzgona, vala i morskih struja na cjevovod za slučaj svih opteživača i jednog otkačenog na dionici 1,2 i 3.

Tablica 61. Prikaz ukupnog naprezanja za djelovanje vertikalnih komponenti sila uzgona, vala i struja na cjevovod na dionici 1

DIONICA 1		
$\mathbf{\Delta}_{sek_opteživača}$	1,356	2,74
σ_{uzgon} (N/cm ²)	0,609	2,488
σ_V^{STRUJA} (N/cm ²)	0,901	3,678
σ _v ^{VAL} (N/cm²)	8,796	35,914

Tablica 62. Prikaz ukupnog naprezanja za djelovanje horizontalnih komponenti sila struja i vala na cjevovod na dionici 1

DIONICA 1		
$\sigma_{\rm H}^{\rm STRUJA}$ (N/cm ²)	0,983	4,015
$\sigma_{\rm H}^{\rm VAL}$ (N/cm ²)	13,757	56,169

Tablica 63. Prikaz ukupnog naprezanja za djelovanje vertikalnih komponenti sila uzgona, vala i struja na cjevovod na dionici 2

DIONICA 2		
Δ _{sek_opteživača}	2,4877	4,9754
σ_{uzgon} (N/cm ²)	2,051	8,202
σ_V^{STRUJA} (N/cm ²)	3,032	12,127
σ_V^{VAL} (N/cm ²)	12,602	50,408

Tablica 64. Prikaz ukupnog naprezanja za djelovanje horizontalnih komponenti sila struja i vala na cjevovod na dionici 2

DIONICA 2		
$\sigma_{\rm H}^{\rm STRUJA}$ (N/cm ²)	3,310	13,239
$\sigma_{\rm H}^{\rm VAL}$ (N/cm ²)	29,349	117,397

Tablica 65. Prikaz ukupnog naprezanja za djelovanje vertikalnih komponenti sila uzgona, vala i struja na cjevovod na dionici 3

DIONICA 3		
$\mathbf{\Delta}_{sek_opteživača}$	5,2875	10,575
σ_{uzgon} (N/cm ²)	9,263	37,054
σ_V^{STRUJA} (N/cm ²)	13,696	54,786
σ_V^{VAL} (N/cm ²)	3,442	13,767

Tablica 66. Prikaz ukupnog naprezanja za djelovanje horizontalnih komponenti sila struja i vala na cjevovod na dionici 2

DIONICA 3		
σ _H ^{STRUJA} (N/cm ²)	14,951	59 <i>,</i> 808
σ _H ^{VAL} (N/cm ²)	45,901	183,606

Sve prethodno provedene kontrole zadovoljavaju u pogledu mehaničke otpornosti cjevovoda za međusobne kombinacije istovremene pojave opterećenja uzgona, vala i morskih struja na cjevovod za slučaj svih opteživača i jednog otkačenog na dionici 1,2 i 3. Dokazano je da su dopuštena naprezanja koja se mogu javiti manja od dopuštenih te na taj način je cjevovod osiguran od eventualnih mehaničkih oštećenja.

3.5 Naprezanja u fazi manevra izmještanja

Provest će se proračun naprezanja nastalog uslijed dizanja cjevovoda tijekom faze punjenja balona. Potrebno je naći onu brzinu za koju će računsko naprezanje biti jednako dozvoljenom naprezanju.

Korišteni su sljedeći izrazi: $Fv = C_V \rho A \frac{V^2}{2}$,

$$\sigma = M \cdot \frac{D_v}{(2 \cdot I)}$$

M - moment savijanja, $M = \frac{F \cdot l^2}{12}$

$$I = \frac{\pi}{64} \cdot \left(D_v^4 - D_u^4\right)$$

U Tablicama 67. i 68. je prikazan postupak određivanja računskog naprezanja.

v (m/s)	Cv	ρ (kg/m₃)	F _v (N/m')	L (m)	M (Nm)	l (m⁴)	σ (N/m²)	σ (N/cm²)
0,1	1,2	1028	1,54	5,996	4,619	5,24598E-05	11006,20	1,10
0,2	1,2	1028	6,17	5,996	18,476	5,24598E-05	44024,80	4,40
0,3	1,2	1028	13,88	5,996	41,572	5,24598E-05	99055,81	9,91
0,4	1,2	1028	24,67	5,996	73,905	5,24598E-05	176099,22	17,61
0,5	0,98	1028	31,48	5,996	94,306	5,24598E-05	224709,94	22,47
0,6	0,9	1028	41,63	5,996	124,715	5,24598E-05	297167,43	29,72
0,7	0,8	1028	50,37	5,996	150,889	5,24598E-05	359535,90	35,95
0,8	0,74	1028	60,86	5,996	182,299	5,24598E-05	434378,06	43,44
0,9	0,71	1028	73,90	5,996	221,369	5,24598E-05	527472,18	52,75
1	0,68	1028	87,38	5,996	261,747	5,24598E-05	623684,72	62,37
1,1	0,66	1028	102,62	5,996	307,399	5,24598E-05	732462,67	73,25
1,2	0,655	1028	121,20	5,996	363,058	5,24598E-05	865087,39	86,51
1,3	0,633	1028	137,47	5,996	411,778	5,24598E-05	981175,30	98,12
1,4	0,63	1028	158,67	5,996	475,302	5,24598E-05	1132538,08	113,25
1,5	0,62	1028	179,26	5,996	536,966	5,24598E-05	1279470,86	127,95
1,6	0,61	1028	200,67	5,996	601,094	5,24598E-05	1432273,62	143,23
1,7	0,6	1028	222,82	5,996	667,455	5,24598E-05	1590396,04	159,04
1,8	0,6	1028	249,80	5,996	748,288	5,24598E-05	1783004,55	178,30
1,9	0,6	1028	278,33	5,996	833,741	5,24598E-05	1986619,27	198,66
2	0,6	1028	308,40	5,996	923,813	5,24598E-05	2201240,19	220,12
2,1	0,6	1028	340,01	5,996	1018,504	5,24598E-05	2426867,31	242,69
2,2	0,6	1028	373,16	5,996	1117,813	5,24598E-05	2663500,63	266,35
2,3	0,6	1028	407,86	5,996	1221,742	5,24598E-05	2911140,15	291,11
2,4	0,6	1028	444,10	5,996	1330,290	5,24598E-05	3169785,87	316,98
2,5	0,6	1028	481,88	5,996	1443,457	5,24598E-05	3439437,79	343,94
2,6	0,6	1028	521,20	5,996	1561,243	5,24598E-05	3720095,92	372,01
2,7	0,6	1028	562,06	5,996	1683,649	5,24598E-05	4011760,24	401,18
2,8	0,6	1028	604,46	5,996	1810,673	5,24598E-05	4314430,77	431,44
2,9	0,6	1028	648,41	5,996	1942,316	5,24598E-05	4628107,50	462,81
3	0,6	1028	693,90	5,996	2078,579	5,24598E-05	4952790,42	495,28

Tablica 67. Prikaz proračuna računskog naprezanja za različite brzine dizanja cjevovoda uzgonjenog balonima sa zrakom

Brzina kretanja cjevovoda kroz morsku vodu od 2,6 m/s je maksimalna dozvoljena brzina pri kojoj cjevovod nećepretrpjeti oštećenja. Izvođač se obvezuje, pri vršenju manevra premještanja, držati se propisanog kriterija. S obzirom da se radi o brzini popriličnog iznosa u vodi, a manevar premještanja će se izvoditi roniocima, nema opasnosti od oštećenja cjevovoda.

v (m/s)	Cv	ρ (kg/m₃)	F _v (N/m')	L (m)	M (Nm)	l (m⁴)	σ (N/m²)	σ (N/cm²)
0,1	1,2	1028	1,54	11,991	18,476	5,25E-05	44024,8	4,40
0,2	1,2	1028	6,17	11,991	73,905	5,25E-05	176099,2	17,61
0,3	1,2	1028	13,88	11,991	166,286	5,25E-05	396223,2	39,62
0,4	1,2	1028	24,67	11,991	295,620	5,25E-05	704396,9	70,44
0,5	0,98	1028	31,48	11,991	377,224	5,25E-05	898839,7	89,88
0,6	0,9	1028	41,63	11,991	498,859	5,25E-05	1188670	118,87
0,7	0,8	1028	50,37	11,991	603,558	5,25E-05	1438144	143,81
0,8	0,74	1028	60,86	11,991	729,196	5,25E-05	1737512	173,75
0,9	0,71	1028	73,90	11,991	885,474	5,25E-05	2109889	210,99
1	0,68	1028	87,38	11,991	1046,988	5,25E-05	2494739	249,47
1,1	0,66	1028	102,62	11,991	1229,595	5,25E-05	2929851	292,99
1,2	0,655	1028	121,20	11,991	1452,234	5,25E-05	3460350	346,03
1,3	0,633	1028	137,47	11,991	1647,112	5,25E-05	3924701	392,47
1,4	0,63	1028	158,67	11,991	1901,207	5,25E-05	4530152	453,02
1,5	0,62	1028	179,26	11,991	2147,865	5,25E-05	5117883	511,79

Tablica 68. Prikaz proračuna računskog naprezanja za različite brzine dizanja cjevovoda uzgonjenog balonima sa zrakom za slučaj dvostrukog povećanja raspona na kojem su baloni postavljeni

Iz *Tablice 68*.seda ako su baloni postavljeni na svako drugi sekundarni opteživač, duljina na koju djeluju poprečne sile se dvostruko povećava te već pri brzini od 1,3 (m/s) dolazi do prekoračenja dozvoljenih naprezanja.

4. TEHNIČKO RJEŠENJE IZVEDBE

Dionica cjevovoda od spoja cijevi na CS "Tribunj"(0+000,00 m) do ubetonirane prirubnice L-32 (0+590,60 m) ostaje u izvornoj trasi. Na ovom potezu cjevovod je ukopan u morsko dno po izlasku iz područja luke štićenog lukobranima) do pred ubetoniranu prirubnicu L-32 (0+590,65 m) kada izlazi na površinu morskog dna.

Dionica trase stacionaže od L-52 (0+745,52 m) do čeonog otvora difuzora L-62 (0+910,00 m) ostaje na mjestu na kojem je i zatečena, u stanju u kojem je zatečena (broj sekundarnih opteživača na toj dionici je nepromijenjen).

Izmješta se trasa dionice od L-32 (X=5560268,4292, Y= 4845363,2912;) do prirubničkog spoja do L-40 (X=5560140,7554, Y=4845283,4083) od stacionaže 0+590,60 m do 0+745,52 m.

Izvođač izmještanja trase treba osigurati odvajanje dijela trase cijevi koja se izmješta od točkeL-32 (0+590,60) m do točke L-40 (0+745,52). Odvajanje znači apsolutno otpuštanje prirubničkog spoja i oslobađanje dionice cjevovoda u duljini 155,883 (m).

Nakon odvajanja dionice trebaju se ukloniti sekundarni opteživači, a baloni za ugon i vertikalni transport dionice podmorskog ispusta se moraju spojiti na primarne opteživače. Manevar izmještanja se mora izvesti jednoliko, bez stvaranja radijusa zakrivljenosti koji mogu uzrokovati oštećenje cjevovoda sukladno primjenjenoj tehnologiji za koju će Izvođač procijeniti da je najprikladnija.

Tehnologija i vrijeme izmještanja prepuštaju se Izvođaču izmještanja dijela trase cjevovoda podmorskog ispusta u skladu sa vremenskim uvjetima.

Kad se dionica izmjesti na novu trasu, prirubničkim spojem ju je potrebno spojiti na cjevovod koji zadržava postojeću trasu. Nakon izvedenog spajanja podmorski ispust postaje kontinuiran te se na njega postavljaju sekundarni opteživači mase 210,00 (kg). Odlučeno je da će se izmještena dionica računski podijeliti na tri segmenta kako bi se eventualno smanjio potreban broj sekundarnih opteživača. Trasa duljine 155,883 (m) se dijeli na dionice:

-od stacionaže definirane točkom L-32 do S-29 (109,855 (m) duljine); dionica1

-od stacionaže definirane točkom S-29 do L-38 (24,877 (m) duljine); dionica 2

-od stacionaže definirane točkom L-38 do L-40 (21,15 (m) duljine); dionica 3 (prema uzdužnom presjeku budućega stanja). Dionica 1 obuhvaća cjevovod na dubini od -4,15 (m) do -6,00 (m), dionica 2 od -6,20 (m) do -10,00 (m), a treća dionica obuhvaća cjevovod na dubini od -10,20 (m) do -13,00 (m). na dionicu 1 potrebno je postaviti sve sekundarne opteživače koji su uklonjeni sa dijela cjevovoda koji se izmješta (29 komada) te je za osiguranjeminimalnog koeficijenta stabilnosti na klizanje potrebno dodati još 52 dodatnih sekundarnih opteživača. Razmak između sekundarnih opteživača je 1,356 (m). Na dionicu 2 se postavlja 10 sekundarnih opteživača na međusobnom razmaku od 2,488 (m), a na dionici 3 su potrebna 4 sekundarna opteživača na razmaku od 5,288 (m).

Na ovaj način postignut je koeficijent sigurnosti na horizontalni pomak 1,011 u točki S-26 (0+640,00 m) koja je ujedno točka na trasi sa najmanjom dubinom i najdominantnijim utjecajem sile vala (*Tablica 38*). Kontrola sigurnosti na klizanje ukazuje da postojeći broj sekundarnih opteživača nije dovoljan. Predlaže se postavljanje sekundarnih opteživača istih geometrijskih karakteristika kao u slučaju postojećih.

Primarni opteživači ostaju u postojećem brojnom stanju (27 komada) sa identičnim međusobnim razmacima od 5,996 (m).

Kontrola sigurnosti na isplivavanje ukazuje da je postojeći broj opteživača na navedenoj trasi duljine 155,883 m dovoljan s najnižim koeficijentom sigurnosti 1,216 u karakterističnoj točki

111

S-26 (0+640,00 m) na kojoj je zabilježena najmanja dubina dna cijevi podmorskog ispusta - 4,15 (m n.m.). Ova točka je ujedno i najkritičnija zbog najvećih sila uzrokovanih valovanjem.

Hidrauličkom analizom CS "Tribunj" i podmorskog cjevovoda utvrđuju se brzine tečenja u cijevi ispusta koje osiguravaju samoispiranje i evakuaciju zraka u cijevi (*Tablica 69.*).

Tablica 69. Radne točke sa pripadajućim brzinama tečenja u cijevi podmorskog ispusta za izmještenu trasu

Radna točka	1.	2.	3.	4.	5.	6.	7.	8.
Q (I/s)	53,318	50,148	48,98	51,97	66,12	63,01	61,151	64,378
H (m)	10,31	10,97	11,212	10,601	14,368	14,681	14,878	14,539
Vispust (m/s)	1,275	1,199	1,171	1,243	1,581	1,507	1,462	1,539
Hbazen(m n.m.)	-1,8	-1,8	-2,4	-2,4	-1,6	-1,6	-2,4	-2,4
Hmore (m n.m.)	-0,4	1	1	-0,4	-0,4	1	1	-0,4

Ovim projektom propisuje izvođenje četiri otvora promjera 1,5 cm okruglog oblika na postojećem cjevovodu i to na u kruni cjevovoda:

-dva otvora promjera 1,5 cm okruglog oblika, na lokaciji S-26 (Uzdužni presjek budućeg stanja 1,prilog D.1.), kota nivelete -4,15 (m n.m.), stacionaža 0+640,00 m.

-dva otvora promjera 1,5 cm okruglog oblika, na lokaciji 1-35 (Uzdužni presjek budućeg stanja 2,prilog D.2.), kota nivelete -4,48 (m n.m.), stacionaža 0+682,11 m.

Otvori se trebaju izvesti na najvišim kotama krune cjevovoda podmorskog ispusta. Ukoliko Izvođač uoči odstupanje od lokacija otvora propisanih ovim projektom treba ih izvesti na za to najprikladnijem mjestu uzduž cjevovoda (najviše dionice cjevovoda). Sukladno piezometarskim stanjima uzduž cjevovoda podmorskog ispusta kroz navedene otvore, osim evakuacije zraka doći će do istjecanja. Da bi se smanjilo onečišćenje mora otvori na cjevovodu trebaju biti malih dimenzija. Ovdje su izabrani okrugli otvori promjera 1,5 (cm).

Kontrola naprezanja u cjevovodu je napravljena za međusobne kombinacije istovremene pojave opterećenja uzgona, vala i morskih struja na cjevovod za slučaj svih opteživača i jednog otkačenog.

Tablica 70. Prikaz ukupnog naprezanja za djelovanje vertikalnih komponenti sila uzgona, vala i struja na cjevovod na dionici 1

DIONICA 1		
$\mathbf{\Delta}_{sek_opteživača}$	1,356	2,74
σ_{uzgon} (N/cm ²)	0,609	2,488
σ_v^{STRUJA} (N/cm ²)	0,901	3,678
σ _v ^{VAL} (N/cm ²)	8,796	35,914

Tablica 71. Prikaz ukupnog naprezanja za djelovanje horizontalnih komponenti sila struja i vala na cjevovod na dionici 1

DIONICA 1		
$\sigma_{\rm H}^{\rm STRUJA}$ (N/cm ²)	0,983	4,015
$\sigma_{\rm H}^{\rm VAL}$ (N/cm ²)	13,757	56,169

Tablica 72. Prikaz ukupnog naprezanja za djelovanje vertikalnih komponenti sila uzgona, vala i struja na cjevovod na dionici 2

DIONICA 2		
Δ _{sek_opteživača}	2,4877	4,9754
σ_{uzgon} (N/cm ²)	2,051	8,202
σ_V^{STRUJA} (N/cm ²)	3,032	12,127
σ _v ^{VAL} (N/cm ²)	12,602	50 <i>,</i> 408

Tablica 73. Prikaz ukupnog naprezanja za djelovanje horizontalnih komponenti sila struja i vala na cjevovod na dionici 2

DIONICA 2		
σ _H ^{STRUJA} (N/cm ²)	3,310	13,239
$\sigma_{\rm H}^{\rm VAL}$ (N/cm ²)	29,349	117,397

Tablica 74. Prikaz ukupnog naprezanja za djelovanje vertikalnih komponenti sila uzgona, vala i struja na cjevovod na dionici 3

DIONICA 3		
$\mathbf{\Delta}_{sek_opteživača}$	5,2875	10,575
σ_{uzgon} (N/cm ²)	9,263	37,054
σ_V^{STRUJA} (N/cm ²)	13,696	54,786
σ _V ^{VAL} (N/cm²)	3,442	13,767

Tablica 75. Prikaz ukupnog naprezanja za djelovanje horizontalnih komponenti sila struja i vala na cjevovod na dionici 2

DIONICA 3		
σ _H ^{STRUJA} (N/cm ²)	14,951	59,808
σ _H ^{VAL} (N/cm ²)	45,901	183,606

Uočava se da su sva naprezanja manja od dozvoljenih čime je dokazano da cjevovod može podnijeti opterećenja nastala u fazi eksploatacije.

Ukoliko, zbog uvjeta na terenu, dođe do odstupanja od propisane trase, Izvođač treba kontaktirati Projektanta i obavijestiti ga o nastaloj situaciji.

Nakon završetka izvođenja izmještanja dijela trase ispusta potrebno je izraditi video zapis sa stanjem ispusta u kojem će se zorno vidjeti sve oznake opteživača.

5. TROŠKOVNIK RADOVA

Droi	Onic stauko	lad miara	Kaličina	Ind ciliona	Iznos
ыој		Jeu. mjere	KOIICIIId	Jeu. cijena	121105
1.					
1.1.	Dovoz i trošak dijela cijevi koji je potrebno nadomjestiti na dionicu koja se izmješta. Dionica je odvojena na prirubnicama te je potrebno dodati dio cijevi kako bi se u izmještenom stanju mogla spojiti na cjevod koji se nije micao. Obračun po m' cijevi	m'	1,678	300 kn	503 kn
1.2.	Nabava, doprema i postavljanje prirubnice na dio cijevi koji će biti nadomješten na dionicu koju je potrebno izmjestiti. Obračun po potrebnom broju komada.	kom	1	500 kn	500 kn
1.3.	Trasiranje dijela cjevovoda u moru uz pomoć broda, ronilaca, plutača te označavanje buduće trase betonskim utezima sa signalnim balonima (lebdećim plutačama) neposredno iznad dna i si. prema tehnologiji izvođenja radova.Obračun po m' podmorskog ispusta i difuzora.	m'	155,88	15,00	2.338,25
L	UKUPNO - PRIPREMNI RADOVI :				3.341.59

Broj	Opis stavke	Jed. mjere	Količina	Jed. cijena	Iznos	
2.	TESARSKI RADOVI					
2.1.	Izrada oplate za betoniranje dodatnih sekundarnih opteživača. Unutrašnja površina oplate mora biti ravna i glatka tako da nakon skidanja oplate vanjske plohe sekundarnih opteživača budu ravne i glatke s oštrim rubovima.	paušal	1	2500	2.500 kn	
	UKUPNO - TESARSKI RADOVI : 2.500 kn					

Broj	Opis stavke	Jed. mjere	Količina	Jed. cijena	Iznos
3.	ARMIRAČKI RADOVI				
3.1.	Dobava, čišćenje, rezanje, savijanje te postavljanje armature od betonskog čelika RA B-500B. Dimenzije šipki su Φ12 mm sa sponama Φ8 mm. Količina konstruktivne armatura za AB sekundarne nosače- 90 kg/m ³ Obračun po kilogramu ugrađene armature.	kg	498,96	8 kn	3.992 kn

UKUPNO - ARMIRAČKI RADOVI :

3.992 kn

Broj	Opis stavke	Jed. mjere	Količina	Jed. cijena	Iznos
4.	BETONSKI RADOVI				
4.1.	Napomena: Kakvoća betona mora odgovarati važećim propisima. Izvoditelj je dužan pribaviti sve potrebne ateste i "projekt betona". Cijenom treba biti obuhvaćena mehanička ugradba, njega i ispitivanje.Potreban broj dodatnih sekundarnih opteživača za osiguranje stabilnosti cjevovoda je 66 komada. Masa jednog sekundarnog opteživača je 210 kg. Betoniranje izvesti u čeličnim kalupima, precizno, u svemu prema nacrtnoj dokumentaciji. Blokove izraditi od betona razreda čvrstoće C35/45. Stavka obuhvaća dobavu, prijevoz, ugradnju u kalupe te njegu svježeg betona. Betonske blokove deponirati na obali.sekundarni opteživač- G=210 kg, V=G/p=210/2500=0,084 m3 Obračun po volumenu sekundarnog opteživača	m³	5,544	1.400 kn	7.762 kn

UKUPNO - BETONSKI RADOVI :

Broj	Opis stavke	Jed. mjere	Količina	Jed. cijena	Iznos
5.	PODMORSKI RADOVI				
5.1.	Odvajanje dionice cjevovoda koja se izmješta, na prirubnicama pozicioniranim na stacionažama 0+590.60 (m) i na 0+745.52 (m). Obračun po satu rada ronioca	sat (h)	1	650 kn	650 kn
5.2.	Uklanjanje i premještanje sekundarnih opteživača sa dionice koja se izmješta (nalazi se na dubini od -6,49 m n.m. do -11,80 m n.m.) na mjesto na koje se premješta ta dionica (na dubinu od -4,15 m n.m. do -12,24 m n.m.). Put koji ronioci prijeđu za premjestit jedan opteživač je cca.150 (m) u jednom smijeru. Potrebno je 15 minuta za premjestiti jedan sekundarni opteživač. Ukupan broj sekundarnih opteživača je 29. Vrijeme potrebno za premještanje svih 29 komada je 7 sati i 25 minuta. Obračun po satu rada ronioca	sat (h)	7,25	650 kn	4.713 kn
5.3.	Postavljenje i punjenje balona zrakom na primarne opteživače zbog jednolikog podizanja cjevovoda sa morskog dna zbog njegovog premještanja na novu trasu. Obračun po satu rada ronioca	sat (h)	2	650 kn	1.300 kn
5.4.	Izmještanje odvojene i slobodne dionice uz pomoć balona ispunjenih zrakom s kote -6,49 m n.m. na kotu -4,15 m n.m. Potrebno je 5 ronilaca za obavljanje ovog posla. Vrijeme potrebno za konačno izmještanje cjevovoda je 3 sata. Obračun po satu rada ronioca	sat (h)	3	3.250 kn	9.750 kn
5.5.	Uranjanje PEHD cijevi dužine 1,6778 (m) koju je potredno nadomjestiti na izmještenu dionicu da bi se mogao ostvariti spoj te dionice sa nastavkom cjevovoda koji se nije pomicao. Za ovaj posao su potrebna 2 ronioca (jedan na brodu, a drugi u moru).	sat (h)	0,5	1.300 kn	650 kn
5.6.	Varenje PEHD cijevi dužine 1,6778 (m) na izmještenu dionicu cjevovoda. Potrebna su dva ronioca, jedan za pridržavanje cijevi, a drugi za vršenje varenja.obračun po satu rada ronioca	sat (h)	1	1.300 kn	1.300 kn
5.7.	Spajanje izmještene dionice na postojeći cjevovod na stacionažama 0+590,60 (m) i 0+745,52 (m). Dvojici ronilaca je potreban jedan sat da naprave jedan spoj na prirubnici što povlači dva sata rada na dvije prirubnice.Obračun po satu rada ronioca	sat (h)	2	1.300 kn	2.600 kn
5.8.	Razmještanje postojećih i dodatnih sekundarnih opteživača uzduž izmještene trase. Pet ronioca vrši razmještanje i postavljanje opteživača po cijevi podmorskog ispusta. U vremenskom razdoblju od tri sata će biti završeno polaganje sekundarnih opteživača. Obračun po satu rada ronioca	sat (h)	3	3.250 kn	9.750 kn

5.9.	Postupak bušenja rupa na izmještenoj trasi na dubini od - 4,15 (m n.m.) i -4,48 (m n.m.) vrši jedan ronilac uz pomoć stroja za bušenje ispod mora. Potreban mu je jedan sat da bi izveo četiri rupe promjera 1,5 cm. Obračun po satu rada ronioca	sat (h)	1	650 kn	650 kn
	UKUPNO - PODMORSKI RADOVI :				31.363 kn
Broj	Opis stavke	Jed. mjere	Količina	Jed. cijena	Iznos
6.	ZAVRŠNI RADOVI				
1	Izrada projekta izvedenog stanja s točnim položajnim nacrtom i uzdužnim presjekom te unesenim svim promjenama trase i nivelete te objekata od prvobitnog projekta	komp	1,00	10.000,00	10.000,00
	UKUPNO - ZAVRŠNI RADOVI :				10.000,00

<u>RAKAPITULACIJA - PODMORSKI ISPUST</u> /Izmještanje dijela trase/

1	ΡΕΙΡΕΕΜΝΙ ΒΑΠΟΛΙ ΠΚΠΡΝΟ	3.341.59
2.	TESARSKI RADOVI UKUPNO:	2500
3.	ARMIRAČKI RADOVI UKUPNO:	3.992 kn
4.	BETONSKI RADOVI UKUPNO:	7.762 kn
5.	PODMORSKI RADOVI UKUPNO:	31.363 kn
6.	ZAVRŠNI RADOVI UKUPNO:	10.000 kn

UKUPNO:

58.957,37

6. LITERATURA

-Knjiga 1, CRPNA STANICA I KOPNENI DIO PODMORSKOG ISPUSTA

-Knjiga 2, CRPNA STANICA I PODMORSKI ISPUST TRIBUNJ

-Troškovnik radova, PRODULJENJE PODMORSKOG ISPUSTA MARINE TRIBUNJ

-Uvid iz Vodovoda (vodovod i odvodnja d.o.o. Šibenik);2016.

-Podvodne snimke Jadranskog Ronilačkog Saveza d.o.o. 2008. i 2015.

-Ultrazvučni batimetrijski snimak uzduž trase-Geomar d.o.o., Split

-Marine Wastewater Outfalls and Treatment Sytems; Philip J.W. Roberts et. Al;2010.

-Luke i podmorske građevine, predavanje;doc.dr.sc.Veljko Srzić-OSNOVE VALNIH

TEORIJA-TEORIJA VALOVA MALIH AMPLITUDA-SVOJSTVA VALA;2016.

Popis slika:

Slika 1.Radne točke CS "Tribunj" za samostalni rad jedne crpke i zajednički rad dviju crp	vki
FLYGT CP 3140-432	. 6
Slika 2. Pregled karakterističnih točaka duž trase položenog podmorskog ispusta	12
Slika 3. Detalj betonskog podmetača difuzora	13
Slika 4. Prikaz bočnog otvora na difuzoru (promjer~8,5 cm) i podmetača difuzora	13
Slika 5. Detalj čeonog otvora na dubini -36,5 m	13
Slika 6. Dubina na mjestu čeonog otvora (-36,5 (m n.m.))	14
Slika 7. Zabetonirana prirubnica na spoju starog i novog cjevovoda	14
Slika 8. Druga prirubnica, 135 metara nakon početka novog dijela cjevovoda	15
Slika 9. Prirubnica na spoju cjevovoda i difuzora	15
Slika 10. Primarni opteživač	16
Slika 11. Sekundarni opteživač	16
Slika 12. Detalj primarnog opteživača	17
Slika 13. Detalj sekundarnog opteživača cjevovoda podmorskog ispusta	17
Slika 14. Zabilježena dubina na dnu rova na mjestu podzide	18
Slika 15. Dubina na detalju spoja cjevovoda podmorskog ispusta/završetak snimke	18
Slika 16. Mjesto izlaska starog cjevovoda (iz 1993.godine) na površinu morskog dna	18
Slika 17. Vertikalni lom cjevovoda na ulazu u rov	19
Slika 18. Vertikalni i horizontalni lom cjevovoda	19
Slika 19. Improvizirani zid na ulazu cjevovoda u rov	19
Slika 20. Detalj podzide izvedene na ulasku podmorskog ispusta u rov	19
Slika 21. Ultrazvučni batimetrijski prikaz trase	20
Slika 22. Detalj rova u ultrazvučnom batimetrijskom prikazu	21
Slika 23. Detekcija opteživača iz ultrazvučnog batimetrijskog snimka	21
Slika 24. Skica difuzora sa pripadajućim čeonim i bočnim otvorima	31

Slika 25. Poprečni presjek čeonog otvora difuzora	33
Slika 26. Grafički prikaz ekvivalentne visine, linije energije i piezometarske linije	36
Slika 27. Grafički prikaz brzina tečenja kroz difuzorsku sekciju	37
Slika 28. skica crpne stanice i podmorskog ispusta sa karakterističnim kotama te prikaz lin	ije
energije i piezometarske linije za karakteristični slučaj	40
Slika 29. Radne točke CS "Tribunj" za postojeću trasu podmorskog ispusta u ovisnosti	i o
razini mora i varijaciji razine vode u usisnom bazenu	47
Slika 30. Radne točke CS "Tribunj" za izmještenu trasu podmorskog ispusta u ovisnosti	i o
razini mora i varijaciji razine vode u usisnom bazenu	56
Slika 31. Prostorni raspored oceanografskih (OC) i strujomjernih (ASS) postaja u područ	čju
planiranog ispusta otpadnih voda kanalizacijskog sustava Srima-Tribunj-Vodicev	59
Slika 32. Satni vektori morskih struja prikazani u Kartezijevom sustavu na postaji ASS-1	61
Slika 33. Hodogram morskih struja na dubini od 3 metra na postaji ASS-1	62
Slika 34. Hodogram morskih struja na dubini od 46 metara na postaji ASS-1	63
Slika 35. Ruža struja na postaji ASS-1	64
Slika 36. Totalni spektar snage morskih struja u površinskom sloju na postaji ASS-1	65
Slika 37. Totalni spektar snage morskih struja u pridnenom sloju na postaji ASS-1	66
Slika 38. Satni vektori morskih struja prikazani u Kartezijevom sustavu na postaji ASS-2	69
Slika 39. Ruža struja na postaji ASS-2	70
Slika 40. Hodogram morskih struja na dubini od 3 metra na postaji ASS-2	71
Slika 41. Hodogram morskih struja na dubini od 46 metara na postaji ASS-2	72
Slika 42. Totalni spektar snage morskih struja u površinskom sloju na postaji ASS-2	73
Slika 43. Totalni spektar snage morskih struja u pridnenom sloju na postaji ASS-2	74
Slika 44. Godišnja ruža vjetra na meteorološkoj postaji Šibenik	76
Slika 45. Akvatorij "Tribunj" s definiranim privjetrištima	81
Slika 46. Apsolutna učestalost pojavljivanja valnih visina	82
Slika 47. Funkcija gustoće vjerojatnosti valnih visina	83

Slika 48. Kumulativna funkcija distribucije valnih visina	83
Slika 49. Valna visina za povratni period 50 godina	84
Slika 50. Prikaz putanje čestice vala u srednje dubokom moru	85
Slika 51. Slika	87
Slika 52. Slika X:	88
Slika 53. Grafički prikaz djelovanja na sekundarni opteživač	91
Slika 54. Grafički prikaz koeficijenata sigurnosti po pripadajućim dubinama	98
Slika 55. Grafički prikaz koeficijenata sigurnosti po pripadajućim stacionažama	99
Slika 56. Dijagram reznih sila uslijed horizontalne sile vala	100

Popis tablica

Tablica 1. Koordinate lomnih točaka postojeće trase ispusta sa kutevima horizontalnih i
vertikalnih lomova te duljinama dionica u smjeru nivelete cjevovoda23
Tablica 2. Koordinate lomnih točaka izmjenjene trase ispusta sa kutevima horizontalnih i
vertikalnih lomova te duljinama dionica u smjeru nivelete cjevovoda27
Tablica 3. Usvojeni parametri difuzorske sekcije
Tablica 4. Prikaz broja otvora i odgovarajućih protoka
Tablica 5. Koeficijent kontrakcije slobodnog mlaza po Von Misesu
Tablica 6. Iterativni postupak definiranja visine otvora na čeonom otvoru34
Tablica 7. Definiranje parametara difuzorske sekcije
Tablica 8. Llinijski gubici uzduž difuzora
Tablica 9. Lokalni gubitci na bočnim otvorima
Tablica 10. Prikaz potrebnih podataka za proračun ekvivalentne razine mora
Tablica 11. Linija energije i piezometarska linija uzduž difuzora
Tablica 12. Hidraulički parametri difuzora 37
Tablica 13. Usvojeni parametri za potrebe definiranja radne točke

Tablica 14. Definiranje mjerodavnih statičkih visina s obzirom na oscilacije morske razine
uslijed djelovanja plime i oseke i varijacija vode i usisnom bazenu CS "Tribunj"
Tablica 15. Parametri FLYGT CP 3140-432 u slučaju rada samo jedne crpke
Tablica 16. Parametri crpke FLYGT CP 3140-432 u slučaju rada dviju paralelno spojenih
<i>crpki</i>
Tablica 17. Proračun linijskih gubitaka uslijed trenja u cijevi podmorskog ispusta u ovisnosti
<i>o protoku</i>
Tablica 18. Proračun linijskih gubitaka uslijed trenja u tlačnoj cijevi crpne stanice i gubitak na difuzoru u ovisnosti o protoku
Tablica 19. Proračun visina dizanja crpke za različite režime rada
Tablica 20. Radne točke sa pripadajućim brzinama tečenja u cijevi podmorskog ispusta 47
Tablica 21. Piezometarska stanja i izlazni protok na otvoru za evakuaciju zraka S-26 za rad
jedne crpke, razinu vode u usisnom bazenu od -2,40 m n.m. i plimu u moru
Tablica 22. Piezometarska stanja i izlazni protok na otvoru za evakuaciju zraka S-26 za rad
dvije crpke, razinu vode u usisnom bazenu od -2,40 m n.m. i plimu u moru
Tablica 23. Piezometarska stanja i izlazni protok na otvoru za evakuaciju zraka L-35 za rad
jedne crpke, razinu vode u usisnom bazenu od -2,40 m n.m. i plimu u moru
Tablica 24. Piezometarska stanja i izlazni protok na otvoru za evakuaciju zraka L-35 za rad
dvaju crpke, razinu vode u usisnom bazenu od -2,40 m n.m. i plimu u moru
Tablica 25. Proračun linijskih gubitaka uslijed trenja u cijevi podmorskog ispusta u ovisnosti
o protoku
Tablica 26. proračun linijskih gubitaka uslijed trenja u tlačnoj cijevi crpne stanice i gubitak
na difuzoru u ovisnosti o protoku
Tablica 27. Proračun gubitaka zbog bočnog istjecanja na dva otvora za evakuaciju zraka 54
Tablica 28. Proračun visina dizanja crpke za različite režime rada za izmještenu trasu
cjevovoda55
Tablica 29. Radne točke sa pripadajućim brzinama tečenja u cijevi podmorskog ispusta za
izmještenu trasu

Tablica 30. Osnovni statistički parametri morskih struja izmjerenih na postaji ASS-1 u
vremenskom razdoblju 11.09.200110.10.2001. godine60
Tablica 31. Osnovni statistički parametri morskih struja izmjerenih na postaji ASS-2 u
vremenskom razdoblju 11.09.200110.10.2001. godine67
Tablica 32. Vjerojatnost istovremenog pojavljivanja različitih smjerova vjetra (%) po
klasama jačine (Bf) i brzine (m/s) vjetra za Sibenik, za godinu u razdoblju 1971 201276
Tablica 33. Težine opteživača i cijevi na suhom i težine istih uronjenih u more
Tablica 34. Izračunate vrijednosti horizontalnih i vertikalnih sila strujanja
Tablica 35. Značajne valne visine za pojedine jačine vjetra iz smjera SE s pridruženim apsolutnim učestalostima pojavljivanja
Tablica 36. Proračun potrebnih parametara za izračun horizontalne i vertikalne sile vala89
Tablica 37. Kontrola stabilnosti na isplivavanje izmještene dionice
Tablica 38. Kontrola stabilnosti na klizanje i prevrtanje na dionici 194
Tablica 39. Kontrola stabilnosti na klizanje i prevrtanje na dionici 295
Tablica 40. Kontrola stabilnosti na klizanje i prevrtanje na dionici 395
Tablica 41. Proračun horizontalne i vertikalne sile vala
Tablica 42. Kontrola stabilnosti ispusta na isplivavanje po stacionažama
Tablica 43. Kontrola stabilnosti ispusta na klizanje i prevrtanje po stacionažama na dionici 1 97
Tablica 44. Kontrola stabilnosti ispusta na klizanje i prevrtanje po stacionažama na dionici 2 97
Tablica 45. Kontrola stabilnosti ispusta na klizanje i prevrtanje po stacionažama na dionici 3 98
Tablica 46. Proračun naprezanja za djelovanje uzgona na cjevovod (svi opteživači (lijevo) i jedan otkačen (desno))
Tablica 47. Proračun naprezanja za djelovanje horizontalne komponente sile morske struje na cjevovod (svi opteživači (lijevo) i jedan otkačen (desno))
Tablica 48. Proračun naprezanja za djelovanje vertikalne komponente sile morske struje na cjevovod (svi opteživači (lijevo) i jedan otkačen (desno))

Tablica 49. Proračun naprezanja za djelovanje horizontalne komponente sile vala nacjevovod
Tablica 50. Proračun naprezanja za djelovanje vertikalne komponente sile vala na cjevovod
Tablica 51. Proračun naprezanja za djelovanje uzgona na cjevovod (svi opteživači (lijevo) i jedan otkačen (desno))
Tablica 52. Proračun naprezanja za djelovanje horizontalne komponente sile morske struje na cjevovod (svi opteživači (lijevo) i jedan otkačen (desno))
Tablica 53. Proračun naprezanja za djelovanje vertikalne komponente sile morske struje na cjevovod (svi opteživači (lijevo) i jedan otkačen (desno))
Tablica 54. Proračun naprezanja za djelovanje horizontalne komponente sile vala na cjevovod
Tablica 55. Proračun naprezanja za djelovanje vertikalne komponente sile vala na cjevovod
Tablica 56. Proračun naprezanja za djelovanje uzgona na cjevovod (svi opteživači (lijevo) i jedan otkačen (desno))
Tablica 57. Proračun naprezanja za djelovanje horizontalne komponente sile morske struje na cjevovod (svi opteživači (lijevo) i jedan otkačen (desno))104
Tablica 58. Proračun naprezanja za djelovanje vertikalne komponente sile morske struje na cjevovod (svi opteživači (lijevo) i jedan otkačen (desno))
Tablica 59. Proračun naprezanja za djelovanje horizontalne komponente sile vala na cjevovod
Tablica 60. Proračun naprezanja za djelovanje vertikalne komponente sile vala na cjevovod
Tablica 61. Prikaz ukupnog naprezanja za djelovanje vertikalnih komponenti sila uzgona, vala i struja na cjevovod na dionici 1
Tablica 62. Prikaz ukupnog naprezanja za djelovanje horizontalnih komponenti sila struja i vala na cjevovod na dionici 1
Tablica 63. Prikaz ukupnog naprezanja za djelovanje vertikalnih komponenti sila uzgona, vala i struja na cjevovod na dionici 2

Tablica 64. Prikaz ukupnog naprezanja za djelovanje horizontalnih komponenti sila struja i
vala na cjevovod na dionici 2107
Tablica 65. Prikaz ukupnog naprezanja za djelovanje vertikalnih komponenti sila uzgona,
vala i struja na cjevovod na dionici 3107
Tablica 66. Prikaz ukupnog naprezanja za djelovanje horizontalnih komponenti sila struja i
vala na cjevovod na dionici 2107
Tablica 67. Prikaz proračuna računskog naprezanja za različite brzine punjenja balona 109
Tablica 68. Prikaz proračuna računskog naprezanja za različite brzine punjenja balona 2 110
Tablica 69. Radne točke sa pripadajućim brzinama tečenja u cijevi podmorskog ispusta za
izmještenu trasu112
Tablica 70. Prikaz ukupnog naprezanja za djelovanje vertikalnih komponenti sila uzgona,
vala i struja na cjevovod na dionici 1113
Tablica 71. Prikaz ukupnog naprezanja za djelovanje horizontalnih komponenti sila struja i
vala na cjevovod na dionici 1113
Tablica 72. Prikaz ukupnog naprezanja za djelovanje vertikalnih komponenti sila uzgona,
vala i struja na cjevovod na dionici 2113
Tablica 73. Prikaz ukupnog naprezanja za djelovanje horizontalnih komponenti sila struja i
vala na cjevovod na dionici 2113
Tablica 74. Prikaz ukupnog naprezanja za djelovanje vertikalnih komponenti sila uzgona,
vala i struja na cjevovod na dionici 3113
Tablica 75. Prikaz ukupnog naprezanja za djelovanje horizontalnih komponenti sila struja i
vala na cjevovod na dionici 2113

SVEUČILIŠTE U SPLITU, FAKULTET GRAĐEVINARSTVA, ARHITEKTURE I GEODEZIJE 21000 SPLIT, MATICE HRVATSKE 15, tel: 021/303-333												
DIPLOMSKI RAD: GLAVNI PROJEKT PODMORSKOG ISPUSTA SUSTAVA ODVODNJE NASELJA VODICE, TRIBUNJ I SRIMA												
GRAĐEVINA: PODMORSKI ISPUST SUSTAVA ODVODNJE NASELJA VODICE, TRIBUNJ I SRIMA												
RAZINA RAZRADE: GLAVNI PROJEKT VRSTA PROJEKTA: GRAĐEVINSKI PROJEKT												
NASLOV PROJEKTA: GLAVNI PROJEKT PODMORSKOG ISPUSTA SUSTAVA ODVODNJE NASELJA VODICE, TRIBUNJ I SRIMA												
SADRŽAJ PRILOGA: SITUACIJA												
STUDENTICA: Marinela Akmadžić MENTOR: Doc. dr. sc. Veljko Srzić												
DATUM: srpanj, 2016. MJERILO: 1:1000 BROJ PRILOGA: 1												

<u>5</u> 36 -	S17 - L21	S18 - L22 -	123	L24	1.25	L26	S19 L27	S20 -	L28 S21	L29		777	S23 -	L32 L32 S24 L33 S24	133 1337	L39 S25 L40 L41 L41	L42 - L43 - S26 -	L44S27	445 445	S28 -	L48 S29 L49	S30 -	L51 -	S31 L52	S32 L53 L54 -	S33 -	L55 -	S34	L56	L57	S36	S39	S38		S39 - L61 - L62 -
-8.50 -	- 8.70	- 8.80	- 01.0	-9.40	- 8.80	- 9.50	-10.10		- 01.0-	- 00.8-		- 06.9-	-7.26 -	-7.05 - -6.75 - -6.62 -	-6.95	-8.81 -8.81 -8.94 -9.17	-9.95 - -10.25 - -10.35 -	-10.25 -	-10.40 -	-10.43 -	-10.41 - -10.45 - -10.50 -	-11.25 -11.00 -10.60	- 10.90	-11.65 - -11.69 - -13.00 -	-14.35 -15.35 -16.00 -16.37	-17.86 -	-19.10 - -20.00 -	-21.15 - -22.00 - -23.00 -	-23.70 - -25.56 =	-27.00 - -27.36 - -28.05 -	-28.55 - -29.00 - ים 40 _	-30.08 =	-32.26 -	···· :	-34.89 - -35.49 - 36.38
-9.28	-9.43	- 73.9-		- 9.83	-10.00 -	-10.16 -	-10.34 -		- 0.79	-9.26		-8.55	-7.11	-6.90 -	-6.80	-8.66 -8.79 -9.02	-9.80 - -10.10 - -10.20 -	-10.10 -	-1025 -	-10.28	-10.26 - -10.30 - -10.35 -	-10.48 -	-10.75	-11.50 -	-14.20 - -15.30 - -16.22 -	- 17.71 -	-18.95 -	-21.00 -	-23.55 -	-27.21 -	-28.40 -	-29.87	-32.11 -		-34.74 - -35.34 -
-0.80	-0.80	-0.80	-0.80	-0.80	-0.80	-0.80	-0.80		-0.80	-0.60		-0.50	-00.0	0.00	- 00.0-	-0.00	0.00	-0.00	- 00.00	- 00.0-	-0.00 -	-0.00	- 00.0-	-0.00	-0.00 -	-0.00	- 00.0-	- 00.0-	- 0.00	- 00.0-	-0.00	-0.00	-0.00	4	-0.00
-9.30	9.50	- 09.6-	- 06.6-	-10.20	- 09.6	-10.30	- 10.90		I 06.6	-8.80		70	-00.0-		-0.00		0.00	-0.00	-0.00	-0.00	-0.00 -	-0.00	-0.00	-0.00	-0.00 -0.00 -0.00	-0.00	-00.0-	-00.0-	- 00.0-	-0.00	-0.00	-0.00	-0.00		
$^{+340.00}_{+342.00}$	+360.00 -)+380.00 -	- 100.00	0+420.00 -	0+440.00 -)+460.00	+480.00 - +483.00 -	0+500.00 -	0+510.00 - 0+520.00 - 0+500.00 - 0+500.00 - 0+500.00 - 0+500.00 - 0+500.00 - 0+500.00 -	+540.00	00 000)+565.00)+580.00 -)+590.60)+608.56 +612.37	0+614.50 0+620.00 1+623.00 1+626.06)+634.87 -)+636.28 -)+640.00 -)+654.08 -)+660.00 -	+664.81 +665.71 +667.70	- 00.08)+694.83 -)+700.00 -)+705.64 -	+720.00)+732.40 -)+740.00 -)+744.57 -	+760.00 - +765.18 - +770.60 -)+786.58 -	+800.00 -)+812.13 - +820.00 -	1+829.55 - 1+834.45 -	++840.00 -	+859.34 =	+880.00 -		+900.00 +904.00 +910.00
-	DN 250/230.8 L= 18.00m i= 0.17%	DN 250/230.8 DI L= 15.00m L= i= 13.00% i=	J 250/230.8 DN 250 15.00m L= 20.4 1.07% i= 0.85	00m L= 20. 00m i= 0.85	0/230.8 DN 25 00m L= 20 5% i= 0.70	i0/230.8 DN 250/2 0.00m L= 20.0 '0% i= 0.20%	230.8 DN 00m L= % i=0	250/230.8 DN 250 17.00m L= 10. 0.82% i= 1.01	$\frac{1}{1230.8}$ DN $\stackrel{?}{=}$ 00m L= 2 1% i= 4.	250/230.8 D 20.02m L 05% i=	N 250/230.8 = 20.00m = 1.25%	DN 250 L= 15. i= 9.4(07m ^{El %+1.9} 0% ^H =	L= 5.25m L= 5.76% L= 5.76% L= 4.31m = 2.557m 0 = 2.557m 0 0	i= 8.60% i= 1.51m = 30.56%	L= 5.67m i= 8.50% L= 3.07m = 7.19% 0	L= 1.4.2m i= 14.18% L= 3.72m = 2.69%	L= 14.08m i= 0.71% L= 5.92m = 1.69% 0 = 4.81m	i= 0.00% L= 4.81m = 0.00% = 0.00%	C = 40.50m = 0.38%	L=4.81m C i= 0.00% 0 L=4.81m 0 = 0.00% 0	L= 14.36m = 0.91% = 4.77m = 0.42%	L= 7.63m i= 3.98% '_= 7.64m = 9.87%	L= 5.53m = 5.43% = 14.68m = 16.57%	L= 5.30m 0 i= 21.24% 0. = 16.97% 0.	L= 9.52m i= 15.85% _= 6.70m 0-	L= 13.58m ([= 12.40m = 21.02%	L= 8.09m = 23.63% = 9.72m	i= 18.85% 1.= 4.95m = 14.08% 0 = 5.57m	i= 9.01% 0 L= 11.86m = 7.95%	L= 7.54m i= 7.05% i= 7.05%	0	L= 20.18m i= 13.30% - 4.04m	i= 14.95% 0 b= 6.07m 0 = 14.83% 0
0°	0°	0°	0°	0°	0°	0°	0°	0°	0°	0°	()°	0°	2° 5° 6°	, 11°1° 1'	° 7° 9° 5°	, 6° 0°	9° 0°	5°	0°	5° 0° 1°	3° 1	° 1°	0° 2° 0°	0° 7° 1°	0°		0°	1° 0°	4°	4° ç	بر 0°	4°	4°	
0.09°	1.38° 0.08°	1.15° 0.61°	0.49°	0.46°	0.40°	0.12°	12.95° 0.47	0.63°	2.32°	0.72°	1.72°	5.37°	13.69° 11.50° 2.51°	3.51 2.49° 1.46° 0.18° 4.91°	16.99° 7.45° 13.63°	3.24° 4.11° 4.87°	8.07 1.54 0.41°	0.97° 0.00°	9.46° 0.00° 0.14°	0.08°	0.44° 0.51° 0.52°	0.24°	5.64°	3.11° 9.41° 11.99°	9.63° 9.01° 10.67°	8.69°	11.87°	13.29°	10.67° 8.01°	5.15° 4.55°	4.03° 5 19°	5.22° 7.58°	8.11°	OVV	8.44

SVEUČILIŠTE U SPLITU, FAKULTET GRAĐEVINARSTVA, ARHITEKTURE I GEODEZIJE 21000 SPLIT, MATICE HRVATSKE 15, tel: 021/303-333												
DIPLOMSKI RAD: IZVEDBENI PROJEKT PODMORSKOG ISPUSTA SUSTAVA ODVODNJE NASELJA VODICE, TRIBUNJ I SRIMA												
GRAĐEVINA: PODMORSKI ISPUST SUSTAVA ODVODNJE NASELJA VODICE, TRIBUNJ I SRIMA												
RAZINA RAZRADE: IZVEDBENI PROJEKT VRSTA PROJEKTA: GRAĐEVINSKI PROJEKT												
NASLOV PROJEKTA: IZVEDBENI PROJEKT PODMORSKOG ISPUSTA SUSTAVA ODVODNJE NASELJA VODICE, TRIBUNJ I SRIMA												
SADRŽAJ PRILOGA: UZDUŽNI PRESJEK POSTOJEĆEG STANJA												
STUDENTICA: Marinela Akmadžić		MENTOR: Doc. dr. sc. Veljko Srzić										
DATUM: srpanj, 2016. MJERILO: 1:1000 BROJ PRILOGA: 3												

PODM. ISPUST 2.00- A: 1: 1000/100 3.00 4.00- 5.00- 6.00- 7.00- 8.00- 9.00- 1.0																																							
ΟΖΝΑΚΑ ΤΟČΚΕ		2 22 F	44 ° ° ° ° °					1 11	112	113 - L14 -	114		817	20	- 11	- 118 -			25	10	-	28		130	[3] [3] [32	525	526		t 88	29 136	130 138 139 139 131	532	L41 L42 S33 L42 L43	S34	L44	L46	233	238	S39 -
KOTA TERENA (m n.m.)	- 0970-	- 06.1-	-3.60 -3.60 	-5.30	-9.00	-	-6.50		- 02.7-	- 06.7-	-8.00	-8.30	-8.40	-8.50	-8.70	-8.80	- 9.10	- 9.40		- 0.50 -	- 4	- 01.9-	- 8.00	- 6.90	-7.57 - -7.57 - -7.90 -	-5.48	-4.24	-5.43 - 5.50 - 5.	4.63	-6.15 - -7.10 -	-8.90 - -10.05 - -11.50 - - 11.98 -	-11.96 - -12.90 - -14.35 -	-15:00 - -15:45 - -16:30 - -16:37 - -17.86 - -19.10 -	-20.00 - -21.15 - -22.00 -	-23.70 - -25.56 - -27.00 -	-28.05 - -28.55 - -29.00 - -29.49 -	-30.02 =	-32.26 -	-34.89 -
KOTA DNA CIJEVI (m n.m.)	- 1.30 -1.50	2.61	-4.30 -4.30 -5.50	-6.00	-6.70		-7.20	- 06 L-		-8.60	-8.70	- 00.6-	- 9.10 -	-9.28	-9.43	- 72.9-	- 19.6-	83.9-	-10.00 -	-10.10		- 67.6-	- 9.26	-8.55	-7.12 - -7.12 - -7.75 -	-5.33	-4.09	-5.05 - -5.28 -	cc. c- 4.50	-6.00 - -6.95 -	-7.75 - -9.90 - -11.35 -	-11.83 - -12.75 - -14.20 -	-15.30 -16.22 - -17.71 - -18.95 -	-21.00 -	-23.55 - -25.41 - -26.85 -	-27.90 - -28.40 - -28.85 - -29.34 -	-29.83 = -30.85 -	-32.11 -	-34.74
DUBINA ISKOPA (m)	-0.80	-0.80	-0.80	-0.80	-0.80		-0.80			-0.80	-0.80	-0.80	-0.80	-0.80	-0.80	-0.80	-0.80	-0.80	-0.80	I I 08:0-		-0.80	-0.60	-0.50	0.00		-0.00	-0.00	00000	- 00.0- - 00.0-			-0.00 -0.00 -0.00 -0.00	- 00.0-	-0.00 -	- 00.0- - 00.00 0.00	-0.00	- 00.0-	-0.00
KOTA DNA ISKOPA	.		- +4.40 - +4.40 				-7.30		-8.50	-8.70		- 01.6	9.20	9.30	.50		06.6	-10.20	9.60			- 06.0	8.80	0.70	I I I I 00:0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-	· · · · · · · · · · · · · · · · · · ·		0000	1 00; 00;0;	I I I 0000-	-0.00 -0.00 -0.00 -0.00 -0.00			00.00	0.00 0.00	00.00	0.00	0.00	-0.00
STACIONAŽA	002.000 009.00 320.00	034.00 - 040.00 - 044.00 -	060.000 =	095.00	120.00- - 130.00-	-140.00	-160.00-	-180.00- 200.00 -	220.00 - 220.00 - 227	246.00 - 245.00 - 254.99 -	260.00	300.00	315.00 - 5 320.00 - 5	342.000	360.009	380.00 - 385.00 -	400.00{	420.00-	1440.00	460.00 - 480.00 - 480.00 - 480.00 - 10	200.00	520.005	540.00 -	565.00(580.00 - 584.31 - 590.60 - 590.50 - 590.50 - 590.50 - 590.50 - 590.50 - 590.50 - 590.50 - 590	520.000 -		655.89	680.00	700.00	724.54	745.52	765.18 - 770.60 - 780.00 - 	800.00	812.13	840.00	859.34	880.00	900.00
PODACI O CJEVOVODU	$\pm \pm \pm \pm \pm$ DN 250/230.8 DN 250/230 L= 9.00m L= 11.011 i= 2.22% i= 4 55%	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	$\frac{1}{10} = \frac{1}{10} $	DN 250/230.8 DN 250/2 L= 15.01m L=5.00r i= 3.33% i= 2.000	$5 + \frac{1}{230.8} \frac{1}{DN} \frac{1}{250(230.8)} \frac{1}{DN} \frac{1}{250(230.8)} \frac{1}{DN} \frac{1}{L} = \frac{1}{12.93m} \frac{1}{L} = \frac{1}{12.96\%} \frac{1}{L} = $	+ 10.00m L= 20.000 1.00% i= 1.50%	$\frac{1}{10000000000000000000000000000000000$	$\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ DN 250/230.8 L= 20.00m i= 1.75%	DN 250/230.8 I L= 15.00m I i= 2.33%	$\frac{3}{5} + \frac{3}{5} + \frac{3}{5}$ N 250/230.8 DN 250/230 = 13.00m L= 9.99m = 1.00% i= 0.204	± ± ± ± ±	$\frac{5}{1}$ DN 250/230.8 1 L= 20.00m 1 j= 1.25%	$\frac{+}{1}$ $\frac{+}{1}$ DN 250/230.8 L= 15.04m i= 0.67%	DN 250/230.8 L= 15.00m i= 0.67%	DN 250/230.8 E L= 18.00m L i= 0.17% i	DN 250/230.8 DN 2 L= 15.00m L= 1 i= 13.00% i- 10	$\frac{+}{1}$ 250/230.8 DN 250/230 5.00m L= 20.00n 07% i= 0.85%	$\begin{array}{c} + \\ 0.8 & DN 250/230.8 \\ m & L = 20.00m \\ i = 0.85\% \end{array}$	DN 250/230.8 L= 20.00m i= 0.70%	$\frac{5}{1}$ $\frac{7}{2}$ $\frac{4}{5}$ $\frac{7}{5}$ $\frac{7}$	DN 250/230.8 DN 22 L= 17.00m L= 10 i= 0.82% i- 10	$\begin{array}{c} + \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	DN 250/230.8 D L= 20.00m L i= 0.05% i-	\pm	230'8 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	= 20.03m	= 20.03m : 5.90% 0+4	= 15.92m = 5.66% = 4,71m 0+ = 2.81% 0+ 2.81% 0+	= 8.94m 0+ = 9.55% 0+ = 2.11m 0+ : 2.81% 0+ = 17.95m 8.22%	= 6.16m 0+ = 5.377% 0+ = 3.53m 0+ 30.18% 0+ = 10.56m	= 8.84% 0+ = 4.63m 0+ = 19.82% 0+ = 10.53m 0+ = 10.53m 0+ = 5.08m 0+ 0+	= 10.50% 0+ = 5.54m 0+ : 8.51% 0+ L= 14.65m = 15.33% 0+7	L= 5.25m 0+ i= 16.22% 0+ i= 16.37% 0+ L= 9.25m 0+ = 15.85% 0+ = 18.84% 0+ = 14.56m 0+	i= 15.28% i= 15.28% i= 12.40m = 21.02%	L= 8.09m i= 23.63% L= 9.72m = 18.85% = 5.05m 0+1	i= 14.08% 0+ i= 14.08% 0+ i= 9.01% 0+ i= 9.01% 0+ i= 7.95% 0+	i= 7.05% L= 0.66m 0+ i= 9.09% =10.90%	0+ 20.18m	14 83%
HORIZONTALNI LOMOVI	1-2.2270 I= 4.55% 0° 0°	1- 3.30% I= 0° 34°	0° 4° 1°		° 10° 1°	0°	0° 0'	1- 1.7.3% 0° 0°	1-2.3370 Is	0°	0° 0	1-1.23% 1	0°	0°	0°	0°	0°	0° 0		0°	1- 0.0270 I= 1.0	0°	0°	- 55.0070 I= 2.275	<u> گي. ~</u> 0° 0°	<u>اا. تا</u> 0°	<u>اا</u> . ت 0°	<u>اللالية الت</u>	<u>ا لا الکار ت</u> 5° 0°	<u>ٿي</u> ٿي ٿ 1° 0° 7°	<u>ا ٿا ٿا تي و</u> 10° 0° 2°	<u>المحالية المحالية ا</u>	• 7° 1° 0°	0°	ی یہ یہ میں اور		0°	4°	4°
VERTIKALNI LOMOVI	1.27° 2.60° 2.49°	1.81° 0.72° 4.82°	2,86° 0.00° 6.60° 1.45°	1.15° 1.41° 1.78°	1.13° 0.86° 0.57°	0.86°	0.57° 1.15° 1.00°	1.72° 1.34°	1.23° 0.57°	0.80° 0.12° 0.23°	0.20° 0.96° 0.72°	0.38°	1.72° 0.09°	3.43° 0.09°	1.38° 0.08°	1.15° 0.61°	0.49°	0.46°	0.40° 0.12°	12.95° 0.47	0.63°	3.66°	0.69°	4.31°	3.98° 1.73° 2.92° 3.71°	3.77°	3.24°	0.05°	4.89 ⁻ 0.82° 4.70°	7.84° 16.79° 5.05°	11.21° 8.74° 5.01° 4.87°	4.87° 9.72° 6.39°	9.63° 9.01° 10.67° 8.09°	12.05°	13.02° 10.67° 8.02°	5.15° 4.55° 4.03°	5.19° 6.22°	7.58°	8.11° 8.44°

SVEUČILIŠTE U SPLITU, FAKULTET GRAĐEVINARSTVA, ARHITEKTURE I GEODEZIJE 21000 SPLIT, MATICE HRVATSKE 15, tel: 021/303-333												
DIPLOMSKI RAD: IZVEDBENII PROJEKT PODMORSKOG ISPUSTA SUSTAVA ODVODNJE NASELJA VODICE, TRIBUNJ I SRIMA												
GRAĐEVINA: PODMORSKI ISPUST SUSTAVA ODVODNJE NASELJA VODICE, TRIBUNJ I SRIMA												
RAZINA RAZRADE: IZVEDBENI PROJEKT VRSTA PROJEKTA: GRAĐEVINSKI PROJEKT												
NASLOV PROJEKTA: IZVEDBENI PROJEKT PODMORSKOG ISPUSTA SUSTAVA ODVODNJE NASELJA VODICE, TRIBUNJ I SRIMA												
SADRŽAJ PRILOGA: UZDUŽNI PRESJEK BUDUĆEG STANJA												
STUDENTICA: Marinela Akmadžić		MENTOR: Doc. dr. sc. Veljko Srzić										
DATUM: srpanj, 2016. MJERILO: 1:1000/100 BROJ PRILOGA: 4												

SEKUNDARNI OPTEŽIVAČ

ZA CIJEV DN 250/230,80

Volumen opteživača= 0,084 m 3 Masa opteživača= 0,084 x 2500= 210,25 (kg) Težina opteživača= 0,084 x 2500 x 9,81= 2060,1 (N) Uronjena težina opteživača = 0,084 x (2500-1028) x 9,81= 1212,98 (N)

TLOCRT

Mj. 1:10

SEKUNDARNI OPTEŽIVAČ PODMORSKOG ISPUSTA

DIPLOMSKI RAD: IZVEDBENI PROJEKT PODMORSKOG ISPUSTA SUSTAVA ODVODNJE NASELJA VODICE, TRIBUNJ I SRIMA

GRAĐEVINA: PODMORSKI ISPUST SUSTAVA ODVODNJE NASELJA VODICE, TRIBUNJ I SRIMA

RAZINA RAZRADE: IZVEDBENI PROJEKT

SADRŽAJ PRILOGA: SEKUNDARNI OPTEŽIVAČ PODMORSKOG ISPUSTA

STUDENTICA: Marinela Akmadžić MENTOR: Doc. dr. sc. Veljko Srzić

DATUM: srpanj, 2016. MJERILO: 1:10

BROJ PRILOGA: 5

VRSTA PROJEKTA: GRAĐEVINSKI PROJEKT