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Rock mechanics, failure phenomena with pre-existing cracks and
internal fluid flow through cracks

Mijo Nikolić

Abstract
This thesis deals with the problem of localized failure in rocks, which occurs often

in civil engineering practice like in dam failure, foundation collapse, stability of excava-
tions, slopes and tunnels, landslides and rock falls. The risk of localized failure should be
better understood in order to be prevented. The localized failure in rocks is usually char-
acterized by a sudden and brittle failure without warning in a sense of larger and visible
deformations prior to failure. This happens also under the strong influence of material
heterogeneities, pre-existing cracks and other defects.

The three novel numerical models, incorporating the localized failure mechanisms,
heterogeneity of rock and pre-existing cracks and other defects, are presented in this
thesis. First model deals with 2D plane strain two-phase rock composite, where stronger
phase represents the intact rock and weaker phase initial defects. Second model repres-
ents the extension of the previous model towards the 3D space, where full set of 3D failure
mechanisms is considered. Heterogeneous properties are taken here through the random
distribution and Gauss statistical variation of material properties. The latter model is also
used for the analysis of intact rock core specimens geometrical shape deviations influ-
encing the uniaxial compressive strength. Third model is a 2D, dealing with volumetric
fluid-structure interaction and localized failure under the influence of fluid flow through
the porous rock medium.

The discrete beam lattice approach is chosen for general framework for three mod-
els, where Voronoi cells represent the rock grains kept together by Timoshenko beams
as cohesive links. The enhanced kinematics characterized for embedded discontinuity
approach is added upon standard kinematics of cohesive links. This serves for the macro-
crack propagation in all failure modes and their combinations, between the rock grains.
The fracture process zone formation followed by micro-cracks coalescence, preceding
the localized failure, is considered as well. Fluid flow is governed by a Darcy law, while
coupling conditions obey Biot’s theory of poroplasticity.

The results of the numerical models were verified by the benchmarks available from
literature in 2D case. The 3D model was validated against the experimental results con-
ducted on 90 rock specimens, where even slight geometrical deviations of specimens are
considered.

Presentation of these models, as well as their implementation aspects are given in full
detail. Embedded discontinuity concept and the local nature of enhancements required
to capture the displacement discontinuities leads to the very efficient approach with static
condensation of enhanced degrees of freedom and technique that can be efficiently incor-
porated into finite element code architecture.
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Mehanika stijena, fenomen loma s postojećim pukotinama i
unutrašnjim protokom fluida kroz pukotine

Mijo Nikolić

Sažetak
Ova doktorska disertacija bavi se problemom lokaliziranog sloma u stijenama koji

se često pojavljuje u različitima zadaćama u inženjerskoj praksi kod otkazivanja nos-
ivosti brana, sloma temelja, stabilnosti iskopa, klizišta i tunela ili stijenskih odrona. Bolje
razumijevanje ovog fenomena je nužno zbog prevencije rizika od lokaliziranog sloma.
Lokalizirani slom u stijenama karakteriziran je iznenadnim i krtim slomom bez upo-
zorenja u obliku velikih i vidljivih deformacija, a uvjetovan je materijalnim heterogen-
ostima, postojećim pukotinama i oslabljenjima.

U ovome radu prezentirana su tri nova numerička modela koja uključuju mehanizme
lokaliziranog sloma, materijalnu heterogenost stijene s postojećim pukotinama i drugim
oslabljenjima. Prvi je 2D model za analizu ravninskog stanja deformacija dvofazne kom-
pozitne stijene, kod koje čvršća faza predstavlja intaktnu stijenu, a slabija faza početne
nepravilnosti (oslabljenja) u stijeni. Drugi model predstavlja proširenje opisanog 2D mod-
ela u 3D područje, gdje su uključeni 3D mehanizmi sloma. Heterogenost je uzeta u obzir
pomoću slučajne raspodjele i Gaussove statističke varijacije materijalnih karakteristika.
Ovaj model je upotrijebljen u analizi utjecaja geometrijskih nepravilnosti oblika stijens-
kih uzoraka na jednoosnu tlačnu čvrstoću. Treći numerički model je dvodimenzionalni,
a bavi se volumenskom interakcijom tekućine i konstrukcije i lokaliziranim slomom pod
utjecajem protoka tekućine kroz poroznu stijensku sredinu.

Osnova sva tri numerička modela je pristup zasnovan na diskretnoj rešetkastoj mreži
greda u kojem su Voronoi ćelije kao diskretne čestice stijene med̄usobno povezane ko-
hezivnim vezama modeliranima pomoću Timoshenkovih greda. Poboljšana kinematika,
karakteristična za metodu konačnih elemenata s ugrad̄enim diskontinuitetima, je dodana
standardnoj kinematici kohezivnih veza što omogućuje nastanak i širenje makropukotina
izmed̄u mineralnih zrna stijene u svim mehanizmima sloma i njihovim kombinacijama.
Proces nastanka mikropukotina koji prethodi lokaliziranom slomu stijene je takod̄er uzet
u obzir u modelu. Protok tekućine definiran je Darcijevim zakonom dok je volumenska
interakcija tekućine i stijene zasnovana na Biotovoj teoriji poroplastičnosti.

Rezultati razvijenih numeričkih 2D modela su verificirani na primjerima iz literature.
Validacija 3D modela provedena je usporedbom s eksperimentalnim rezultatima dobiven-
ima ispitivanjem 90 stijenskih uzoraka, gdje su razmatrane i geometrijske nepravilnosti
stijenskih uzoraka. U ovoj doktorskoj disertaciji detaljno su prezentirani svi razvijeni
numerički modeli, kao i njihova matematička i numerička implementacija. Pristup s
ugrad̄enim diskontinuitetima i lokalnim poboljšanjima za simulaciju diskontinuiteta u
polja pomaka te statičkom kondenzacijom dodatnih stupnjeva slobode je na vrlo efikasan
način ugrad̄en u program za analizu konstrukcija metodom konačnih elemenata.
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Mécanique des roches, phénomènes de rupture avec la prise en
compte des fissures existantes et l’écoulement du fluide interne à

travers les fissures

Mijo Nikolić

Resumé
Cette thèse aborde le problème de la rupture localisée dans les roches, qui charcter-

ise un grand nombre d’applications dans le domaine du génie civil, tels que la rupture
du barrage, effondrement desfondations, la stabilité des excavations ou les tunnels, les
glissements de terrain et éboulements. Le risque de rupture localisée devrait être mieux
apprehendé pour mieux l’évitér. La rupture localisée dans les roches est généralement
caractérisé par une une rupture soudaine et quasi-fragile sans avertissement dans un sens
de plus grandes déformations et visibles avant l’échec. Cela se produit également sous
l’influence des hétérogénéités matériels, influencé par des fissures existantes et d’autres
défauts initaux.

Les trois nouveaux modèles numériques, intégrant les mécanismes de rupture local-
isées, l’hétérogénéité de la roche et de fissures existantes et d’autres défauts, sont présentés
dans cette thèse. Premier modèle propose une représentation 2D de roche composite à
deux phases, où la phase solide représente la roche intacte et les plus faibles en phase
défauts initiaux. Deuxième modèle représente l’extension du modèle précédent vers
l’espace 3D, où un ensemble complet de mécanismes de défaillance 3D est considéré.
Propriétés hétérogènes sont prises ici par la distribution aléatoire en accord avec la vari-
ation statistique Gaussienne des propriétés des matériaux. Ce dernier modèle est égale-
ment utilisé pour l’analyse de la roche intacte spécimens écarts de forme géométriques
qui influencent la résistance à la compression uniaxiale. Troisième modèle est un modèle
2D, traitant interaction volumétrique entre fluide et structure et la rupture localisée sous
l’influence de l’écoulement du fluide à travers le milieu de la roche poreuse.

L’approche de lattice discret est choisi pour construire le cadre général pour trois
modèles, où les cellules de Voronoi représentent les grains de roche gardés ensemble par
Timoshenko poutres que des liens de cohésion. La cinématique améliorées caractérisées
pour l’approche intégrée de discontinuité est ajouté sur la cinématique standard de liens
cohérents. Cela sert pour la propagation de la fissure macro dans tous les modes de
défaillance et de leurs combinaisons, entre les grains de la roche. La formation de la zone
de processus de rupture suivie par des micro-fissures coalescence, précédant la rupture
localisée, est considéré comme bien. Écoulement de fluide est régie par une loi de Darcy,
tandis que les conditions de couplage obéissent à la théorie de Biot de poroélasticité.

Les résultats des modèles numériques ont été vérifiées par les repères de la littérature
dans le cas 2D. Le modèle 3D a été validé contre les résultats expérimentaux effectués



12

sur 90 échantillons de roches, où de légères déviations géométriques de spécimens sont
considérés.

Présentation de ces modèles, ainsi que leurs aspects de mise en œuvre sont présentés
en détail. Notion de discontinuité intrinsèque et le caractère local des améliorations néces-
saires pour capturer les discontinuités de déplacement conduit à l’approche très efficace
avec condensation statique des degrés améliorés de liberté et de technique qui peut être
efficacement intégrés dans architecture standarde d’un logiciel élément finis.

Rock mechanics and failure phenomena
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2 Introduction

Figure 1.1: Rock falls hitting the coastal roads: Omiš, April 2012.; Omiš, April 2012.;
Krilo Jesenice, March 2010.

1 Motivation

Rock material is a natural geological material consisting of different minerals. It is discon-
tinuous, anisotropic, inhomogeneous, inelastic and contains numerous randomly oriented
zones of initiation of potential failure, like initial joints, defects, cavities or other nat-
ural flaws. Rocks have been used from the early beginnings of the human race in many
different ways especially for the building purposes. We were constantly facing its unpre-
dictable nature trying to build roads, tunnels, underground excavations, mining shafts or
avoid the sudden rock falls and sliding of slopes. From the early days there was a need
for predicting the behaviour of this material and up to present times, we are still trying to
fully understand it.

In the Croatian coastal and other karst areas, there is a pressing problem of massive
rock fall occurrence that threatens the roads and inhabited places. The intensity of rock
falls increases significantly after the heavy rains, requiring mostly additional financial
investment into maintenance and reconstruction of roads. Namely, the main Adriatic road
is hit by a large amount of rock falls every year, while some road sections like Split-Omiš
and Vrgorac-Makarska are closed at least once per year (Figure 1.1).

On the other hand, many inhabited places are endangered as well. Omiš is the most
populated city on the Croatian coast which is under the direct danger of rock falls, where
even city centre lies beneath the huge rock blocks (Figure 1.2).

Many private houses in Omiš are also under close range of potential rock falls, while
some of them have already been hit (Figure 1.3). There is a need to tackle these problems
in order to reduce the damage, and most importantly, to avoid the loss of human lives.

Localized failure, usually sudden and unpredictable, represents the main failure mech-
anism of these rock blocks. It occurs also in many other engineering failure occasions like
foundation collapse, stability of excavations, slopes and tunnels, landslides and rock falls,
to mention only a few. The risk of localized failure should be better understood in order
to be prevented.

Because of the irregular nature of rock material, the prediction of its behaviour has
always been a challenging task. Rock mechanics has been developed mostly for the design
of rock engineering structures and today we have a wide spectrum of different modelling
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Figure 1.2: Omiš city centre under the danger of potential rock falls

approaches for many various rock mechanics problems. That include the approaches
based on the previous experiences, simplified mathematical models that can be solved
analytically (e.g. Bishop method of slices for slope stability) or general classification
systems for rocks that are based on empirical correlations for indirect estimates of rock
deformation properties. The latter found large number of applications in various types of
engineering projects like designing and construction of excavations in rock. The lack of
information about rock properties is a common fact in rock mechanics and engineering
design so empirical approaches (including the classification systems) are also widely used.
There are couple of rock mass classification system including Rock Mass Rating (RMR),
Geological Strength Index (GSI), Tunnelling Quality Index (Q) and Rock Mass Index
(RMi) classifications which are used to estimate the rock mass properties.

The development of computers made a significant contribution to the computational
mechanics which found its wide use in rock mechanics. Namely, the numerical methods
for solving the partial differential equations are used today as the main approach in en-
gineering design and research of rock mechanics. These methods have tried to simulate
such a complex behaviour of this natural and unpredictable material and were constantly
evolving since their beginnings which occurred in the early 1960s. Today, the simulations
stand as significant tool for obtaining more insight into the full control of rock behaviour.
Next section provides the overview of the numerical methods used for simulating the rock
behaviour.
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Figure 1.3: Severe damage of houses is caused by rock falls: Omiš, January 2012.

2 Overview of the numerical methods applied to rock
mechanics

The numerical methods can be classified into three main categories: continuum, discon-
tinuum and hybrid continuum/discontinuum methods. Namely, the continuum concept
implies that the domain of interest cannot be separated and the continuity between the
points / elements must be preserved in order to establish the derivatives. Contrary to the
analytical solution of differential equations where the solution is known in each point, the
numerical solution is calculated in the finite number of pre-defined nodes which reduces
the system complexity. The discontinuum approach on the other side threats the separate
elements as discrete ones which are individually continuous and they mutually interact. In
the discontinuous methods, the rigid body motion (usually with large movements) is the
main case of interest, while in continuum-based methods the deformation of the system
is the main objective. Thus, the sliding of the rock block on the pre-existing discontinu-
ity would rather be computed with the discrete methods, while the choice of continuum
method would better serve in calculating the deformation of the rock mass above the ex-
cavation of the tunnel. In addition there also exist the hybrid continuum/discontinuum
methods that use the best properties of both approaches. Such an example is to have the
discrete rock block which moves and also deforms under the external loading.

The most notable continuum numerical methods are Finite Difference Method (FDM),
Finite Volume Method (FVM), Finite Element Method (FEM), Meshless Methods and
Boundary Element Method (BEM). The discontinuum methods are Discrete Element
Method (DEM) and Discrete Fracture Network (DFN). The most notable hybrid con-
tinuum/discontinuum methods with applications in rock mechanics are Discrete Finite
Element Method and Combined Finite Discrete Element Method (Table 1.1).

2.1 Finite Difference and Finite Volume Method (FDM, FVM)
The Finite Difference Method (FDM) is one of the oldest widely-applied numerical meth-
ods for solving the partial differential equations that found its application in the rock
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Table 1.1: Overview of the most notable numerical methods
Continuum methods:
Finite Difference Method FDM
Finite Volume Method FVM
Finite Element Method FEM
Meshless Methods
Boundary Element Methods BEM
Discontinuum Methods:
Discrete Element Method DEM
Discrete Fracture Network Method DFN
Hybrid Methods:
Discrete Finite Element Method
Combined Finite Discrete Element Method FEM/DEM

mechanics field. The general principle of the method is replacing the partial derivatives
of the function by the finite differences defined over the certain interval in the coordinate
directions. More precisely, the domain needs to be partitioned into grid of nodes, among
which the finite differences are defined. It’s worth noting that the FDM can be used for
solving the time dependent problems.

As a result of meshing the domain, a system of algebraic equations with unknowns
related to the pre-defined nodes will arise. Each algebraic equation connected to its cor-
responding grid node is expressed as combination of function values at its own node, as
well as at the surrounding nodes. After introducing the boundary conditions, the sys-
tem of algebraic equations is finally solved (usually by direct or iterative methods) which
produces the values of unknowns at each node leading to the approximate solution of the
partial differential equation with an error made because of the difference in partial derivat-
ives and finite differences. Such a direct kind of discretization, together with no practical
need to use interpolation functions as in other methods like FEM or BEM, position this
method as the most direct and intuitive technique for solving the partial differential equa-
tions. The advantage of the method is also in possibility of the simulation of complex
nonlinear material behaviour without iterative solutions.

The standard FDM uses regular grids, such as rectangular which is also the most im-
portant shortcoming of the method. Thus, representing the irregular geometries together
with dealing with heterogeneous nature of rocks and complex boundary conditions seems
like a significant disadvantage of this method for simulating rock behaviour in practical
rock mechanics tasks. Another important disadvantage lies in continuity requirement of
the proposed equations which is not suitable for dealing with fractures. However, the gen-
eral FDM method [Perrone and Kao, 1975, Brighi et al., 1998] evolved eventually to deal
with this shortcomings, mostly with irregular grids, which include irregular quadrilateral,
triangular and Voronoi grids.

The further development of this approach continued with the Finite Volume Method
(FVM) [Wheel, 1996]. The FVM is also a method for solving the partial differential
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equations, not directly as in FDM, but in integral sense. The method is based on the for-
mulation of finite volumes, which represent the volume surrounding each node in mesh.
The basic principle is to replace the integrals with algebraic functions of the unknowns in
the nodes, taking into account the initial and boundary conditions which lead to the set of
algebraic equations.

The main advantages of the FVM are the possibilities of using the irregular unstruc-
tured meshes such as arbitrary triangles, quadrilaterals or Voronoi cells and considering
the material heterogeneities [Fallah et al., 2000]. The continuity requirement between the
neighbouring nodes still makes the fracture propagation impossible to include, which is a
main disadvantage of FDM/FVM. The analysis of the fracturing processes in FDM/FVM
models can be conducted through the material failure at the nodes or cell centres, but in
this way it is not possible to simulate the true fracture propagation. Despite this lacking,
the FVM is still one of the most popular numerical methods in rock mechanics with ap-
plications in slope stability, tectonic process, rock mass characterization and especially in
coupled hydro-mechanical problems. The latest improvements of the FDM/FVM can be
seen in [Benito et al., 2001, Onate et al., 1994, Lahrmann, 1992, Jasak and Weller, 2000].

2.2 Finite Element Method (FEM)

The Finite Element Method (FEM) originates from the early 1960s and the works of
[Clough, 1960, Argyris, 1960]. It was developed as an alternative to the finite difference
method for the numerical solution of stress concentration in continuum mechanics and
was the first numerical method which was able to account for material heterogeneities,
non-linearities, complex geometries and boundary conditions. Due to this, FEM immedi-
ately became the most applied numerical method in rock mechanics, especially because
the FDM at that time was limited only to regular grids. The rapid application of the
method started in the late 1970s and early 1980s when many rock mechanics problems at
that time were solved with FEM [Naylor et al., 1981]. The FEM was evolving fast dur-
ing the years, and today it is still the most applied numerical method for many advanced
rock and soil mechanics simulations of the non-linear, time-dependent and anisotropic
behaviour.

The general principle of FEM is to divide the domain of the problem into smaller
sub-domains called finite elements, do the local approximation inside each finite element,
perform the finite element assembly and find the solution of the global matrix equation.
More precisely, the unknown function (usually displacement function) needs to be ap-
proximated with a trial functions of the nodal values in a polynomial form, where the
numerical integration is performed in each element in Gaussian quadrature points. After
the finite element assembly is performed, the algebraic system of equations on a global
level is obtained. One of the mostly used advantages of FEM is a possibility of represent-
ing heterogeneous rocks, where it is possible to assign the different material properties to
different finite elements. Presently, there are many various shapes of finite elements with
different number of nodes for 1D, 2D and 3D cases. Special case of elements called the
’infinite elements’ was developed to simulate the far-field domain in geotechnical applic-
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ations [Zienkiewicz et al., 1983].
Because of the continuum assumptions, the FEM method has restrictions in efficient

application of the failure analysis, cracking and damage induced discontinuities or sin-
gularities [Ibrahimbegovic, 2009]. Since rock is a discontinuous material and FEM is
a continuum method, there have been many attempts to improve it in order to simulate
the fracture propagation and other discontinuous effects with it. From the early experi-
ments on rock specimens, it was observed that the experimentally obtained stress-strain
curves up to failure are not linear. One of the earliest models that could approximately
simulate the stress-strain nonlinear curve due to crack opening was smeared-crack model.
This model was perfectly brittle in the beginning, although the rock has some residual
load-carrying capacity after reaching its strength resulting with softening behaviour. An-
other attempt was an indirect representation of the discontinuities with the ’joint’ elements
where their influence on physical behaviour is considered through constitutive laws of the
discontinuities as equivalent continuum. However, no real detachment is possible with
them. The ’joint’ elements are also limited to small displacements, while large move-
ments across the discontinuities (e.g. sliding on the discontinuities) are not possible due
to the continuum assumptions. The first element of this kind was ’Goodman joint ele-
ment’ developed especially for rock applications [Goodman et al., 1968].

The ultimate load computation where structural elements are subjected to progressive
failure which leads to the collapse of the structure has been the topic of interest of many
authors recently since this is one of the crucial types of failure mechanisms. The key
difficulty in failure analysis is correct and mesh-independent representation of the post-
peak softening behaviour related to crack propagation. Also, when trying to simulate
the fracture growth with FEM, it is essential to have small size of elements and perform
the continuous re-meshing as the crack propagates. The ’enhanced’ FEM methods have
been evolving to overcome the re-meshing, which resulted with couple of new meth-
ods. On one side there is the finite element method with embedded discontinuities (ED-
FEM), representing cracks truly in each element [Simo et al., 1993, Simo and Rifai, 1990,
Ibrahimbegovic and Wilson, 1991, da Costa et al., 2009]. On the other side there is exten-
ded finite element method (X-FEM) where cracks are represented globally
[Moes et al., 1999, Fries and Belytschko, 2006, Fries and Belytschko, 2010]. The ED-
FEM and X-FEM methods are equivalent in their capabilities to handle the most de-
manding kinematics incorporating both strong and weak discontinuities. The strong dis-
continuities serve for truly simulating the crack propagation, while the weak discontinu-
ities enable the heterogeneous representation of material within element. The general
approach is to enhance the standard kinematics of the finite elements with additional dis-
continuous functions to simulate discontinuous behaviour. Thus, the enhanced kinematics
in the strain and displacement fields serve respectively for dealing with heterogeneities
and localization phenomena. The most recent contribution to ED-FEM approach in rock
mechanics was made in the following works [Saksala, 2014, Saksala et al., 2015] where
the crack propagation due to failure modes I,II, as well as their combination, provide
successful simulation of complex failure mechanisms that occur in rocks. This kind of
representation is also suitable for connecting the scales where the natural crack growth
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from the micro to macro cracks can be simulated. Namely, the cracks form as a res-
ult of accumulation of micro-cracks leading to forming larger macro-cracks. Another
example of enhanced finite elements is a Generalized Finite Element Method (G-FEM)
[Strouboulis et al., 2000, Strouboulis et al., 2001]. The G-FEM uses the local functions
which are usually analytical solutions to specific problems. These additional functions
are not necessarily polynomials, but are bonded together with the standard space through
the partition of unity principle.

Apart FEM being suitable for representing heterogeneous materials and using the un-
structured and irregular meshes, it also proved to be the appropriate tool for representing
various non-linear and inelastic types of behaviour. These observations carried the chal-
lenges up to present time and many different models have been made for representation
of material hardening and softening macro responses. Among them, damage and plasti-
city models, are the most used frameworks for simulation of the non-linear and inelastic
behaviour of material [Lemaitre and Chaboche, 1994]. The FEM is also suitable for rep-
resenting the geometric non-linearities, contact mechanisms, fluid-structure interaction,
multi-scale problems, etc. All of these reasons position the FEM as the mostly used nu-
merical method applied in rock mechanics.

2.3 Meshless methods
The application of the FEM in practical engineering problems with complex geomet-
ries, material properties and boundary conditions requires mesh generation which some-
times, especially in 3D problems, can be equally as demanding as solving the prob-
lem. Another problem can occur as a results of large mesh distortions. The both of
these problems can be avoided by meshless methods which developed in a way that
elements connecting the nodes are not required. Instead, the trial functions are gen-
erated from the neighbouring nodes within a domain of influence. More precisely, it
is only necessary to generate the nodes across the domain without defining fixed ele-
ment topology. Many meshless methods have been developed, but some of the mostly
used ones are: Smoothed particle hydrodynamics, Diffuse element method, Element-free
Galerkin method, Reproducing kernel particle methods, Moving least-squares reprodu-
cing kernel method, hp-cloud method, the method of finite spheres, Finite point method
etc. Overview and the implementation aspects of the meshless methods can be found in
[Nguyen et al., 2008, Belytschko et al., 1996]

2.4 Boundary Element Method (BEM)
The basic principle of BEM is to fit boundary values into the integral equation. Thus the
discretization is needed only at the boundary with a finite number of boundary elements.
After finding the solution on a boundary, the interpolation can be used for calculating the
solutions inside the domain. The main advantage of the BEM is reduction of model di-
mensions by 1. The approximation of the solution at the boundary elements is performed
using the shape functions similarly to FEM. When applying the boundary conditions into
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the matrix equations obtained after the approximation stage, the final global matrix equa-
tion with unknowns at boundary is obtained.

The BEM has its origins in the early 1980s [Crouch and Starfield, 1983]. This method
has found applications in underground excavations, dynamic rock problems, analysis of
in situ stress and borehole drilling. Besides reducing the model dimensions by 1, its
strength is accuracy in finding the solution because of its direct integral formulation. The
standard BEM was developed for continuous and linear elastic solutions inside domain
which was a disadvantage of the method in the beginning. The other main disadvantage
over FEM is not efficient dealing with heterogeneity because not complete domain is
discretized with elements. The fracture propagation with BEM was simulated in the works
of [Blandford et al., 1981, Mi and Aliabadi, 1992], using domain subdivision into sub-
domains or by Dual BEM. The notable variants of BEM are also Galerkin BEM (GBEM)
[Bonnet et al., 1998] and Dual-reciprocity BEM (DRBEM) [Kontoni, 1992].

2.5 Discrete Element Method (DEM)
The DEM started to develop in the field of the rock mechanics applications due to its
requirements for the modelling of discontinuous behaviour [Cundall, 1971]. The method
was primarily defined as the computational approach that can simulate finite displace-
ments and rotations of discrete bodies including their detachment. The theoretical formu-
lations are based upon the equations of motion of rigid or deformable bodies. The basic
concept is to threat the domain of interest as an assembly of particles or blocks which are
continuously interacting between each other. In the DEM approach, the contact between
components of the system is constantly changing during the deformation process.

The constant evolution of DEM led to many different numerical approaches developed
for various rock mechanics problems. The main strength of the approach was the fact that
the real discontinuities could be simulated, as well as representing the rock blocks which
moves and interacts between each other including the fragmentation process etc. All of
DEM based methods have the similar basic approach, while the difference between them
are the use of various shapes of discrete elements, the way of computing the contact forces
between the discrete bodies, the way of recognizing the contact, the way of integration
of equations of motion, etc. The contact between the discrete bodies is essential part of
solving the task. The overview of the contact models can be found in [Wriggers, 2006].

The two main approaches of DEM exist according to the numerical integration scheme
that can be explicit or implicit. The application of the explicit DEM started in the 1970s
and was used mostly for rigid block simulations. The most representative explicit DEM
method is Distinct Element Method developed by Cundall [Cundall, 1988]. It was cre-
ated to simulate the fracturing, cracking and splitting of the blocks under external loading.
The method was applied in many various rock mechanic applications including tunnel-
ling, underground works and rock dynamics, nuclear waste disposal, rock slopes, acoustic
emission in rock, boreholes, laboratory test simulations etc.

The most well-known method of implicit DEM approach is Discontinuous Deform-
ation Analysis (DDA) [Shi, 1992]. It is similar to the finite element method for solving
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deformation of the bodies, but it also accounts for interaction of the independent blocks
along discontinuities in fractured and jointed rock mass. The interaction between the inde-
pendent blocks is performed by contact algorithms. It is an attractive method for solving
rock mechanics problems where the rock blocks interact and deform between each other.

Besides using the block systems in rock mechanics, the particle based DEM is an
appropriate method for simulating the granular materials such as soil. The principle of
solving tasks with granular materials is the same as for blocks, but with the simpler con-
tact mechanisms due to rigid regular or irregular particles that do not deform. The regular
particles include circular, elliptical and ellipsoidal shapes, while irregular ones can be
polygonal or polyhedral. Some of the applications of particle based DEM in rock mech-
anics are rock fracturing and fragmentation due to rock blasting, tunnelling, hydraulic
fracturing.

Another approach similar to DEM is the Discrete lattice network methods used to
simulate rock fracture initiation and propagation [Ostoja-Starzewski, 2002]. The general
idea is to have rigid particles covering the domain of interest, with springs acting as co-
hesive links and connecting the particles. The springs usually do not possess the mass and
have the characteristic stiffness properties of material. The mass of the particles depend
on the density of the material. During the simulation process, the springs deform until
they are completely broken leaving the particles to move and interact with other particles.
When the cracks propagate through the domain, cohesive links are usually removed and
remeshing is performed to simulate the evolving discontinuities.

2.6 Discrete Fracture Network (DFN)
The DFN is a discrete model for simulating fluid flow and transport processes through
the connected fractures [Tsang and Tsang, 1987, Cacas et al., 1990]. DFN also makes
consistent use of a wide variety of disparate geological, geophysical and production data
to generate the system of fractures, where latter are modelled through the combination of
deterministic and stochastic models. A DFN model can be used for simulating the rock
mass properties and large scale rock problems.

2.7 Hybrid methods
Many numerical methods that combine advantages of finite and discrete elements de-
veloped. One of the well-known methods which combine finite and discrete elements is
Discrete Finite Element Method [Ghaboussi, 1988]. The main advantage of the method
is a possibility to simulate interaction between the blocks, as well as the deformation of
blocks. The higher order shape functions are used here for considering non-linear de-
forming of the blocks. The method uses implicit time integration and it is similar to
Discontinuous Deformation Analysis (DDA). Another hybrid approach is Combined Fi-
nite Discrete Element Method (FEM/DEM) [Munjiza et al., 1995] which considers block
deformation as well as the fragmentation processes. Contrary to Discrete Finite Element
Method, the FEM/DEM uses explicit time integration scheme. The FEM/DEM method is
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used in rock mechanics applications [Mahabadi et al., 2012] and stone blocks interactions
[Smoljanovic et al., 2013]. There were some developments of the method considering the
reinforcement between discrete elements with application in concrete, but which can be
easily used to simulate the rock slopes or tunnel excavations with anchor reinforcements
[Zivaljic et al., 2013].

3 Aims, scopes and methodology
The main scientific goal of this thesis is to provide the enhanced predictive models for
localized failure in rock mechanics, by taking into account material heterogeneities and
pre-existing defects. Localized failure represents the typical type of rock failure where
full set of failure modes is needed: modes I and II in 2D setting and modes I, II and III
in 3D setting. Mode I stands for tensile opening leading to development of macro-cracks,
while modes II and III represent shear sliding along the cracks. However, the true rock
failure consists of two dissipative mechanisms: fracture process zone with micro-cracks
and localized failure mechanism with macro-cracks. The aim of the thesis is to combine
these two mechanisms within the single model, which depends on fine scale heterogeneit-
ies. The novel approach is proposed here, by considering the rock material as a assembly
of grains held together by cohesive forces. For this purpose, the discrete lattice model
approach is chosen for rock representation, while cohesive links are enhanced with addi-
tional discontinuous properties. Such an enhancement is enabled through the embedded
discontinuity framework (ED-FEM).

Another goal pertains to understanding the role of the fluid-flow to the development
of micro-cracks and macro-cracks during the localized failure process. This leads to a
complex multiphysics problem of volumetric fluid structure-interaction where all of the
ingredients of the rock mechanics model need to be combined with micro-porosity of rock
which allows for flow through the porous medium.

4 Outline
The outline of this thesis is as follows. Chapter 2 provides the full development and nu-
merical examples of the novel discrete 2D rock mechanics model. In Chapter 3, the novel
3D model is presented, together with the numericaly obtained results that are compared
to experimental ones. Numerical part of the research study on the role of rock specimen
shape deviations on uniaxial compressive strength is given in Chapter 4. Chapter 5 brings
the novel 2D model for simulating the failure of rocks under the influence of fluid flow
through the porous medium. Finally, the conclusion summarizes all the main findings of
the thesis and suggests the future perspective of the study on this topic, in Chapter 6.
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Chapter 2

2D rock mechanics model: embedded
discontinuity approach for representing
mode I and mode II failure mechanisms

In this chapter, a discrete beam lattice model with embedded discontinuities capable of
simulating rock failure as a result of propagating cracks through rock material is

presented. The developed model is a 2D (plane strain) micro-scale representation of
rocks as a two-phase heterogeneous material. Phase I is chosen for intact rock part,
while phase II stands for pre-existing micro-cracks and other defects. The proposed
model relies on Timoshenko beam elements enhanced with additional kinematics to

describe localized failure mechanisms. The model can properly take into account the
fracture process zone with pre-existing micro-cracks coalescence, along with localized

failure modes, mode I of tensile opening and mode II of shear sliding. A novel numerical
procedure for dealing with two modes failure within framework of method of

incompatible modes is presented in detail and validated by a set of numerical examples.
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14 2D rock mechanics model

1 Model description

Rock material is a highly heterogeneous material that contains numerous randomly ori-
ented zones of initiation of potential failure. These zones can be various kinds of initial
flaws, cracks, cavities, pores or other defects inside the rock. Not all defects exist from the
beginning of loading. When a heterogeneous material is loaded, the new cracks initiate
from existing defects, start to propagate and tend to form into larger macro-cracks. This
processes of accumulation of cracks leads to complete failure, which is usually a brittle
type failure characterized for large number of rock types. In this chapter, the first goal is
to deal with the crack propagation, the main mechanism of brittle failure of rocks in 2D
plane. The answer for second goal of representing a more ductile failure of rocks due to
frictional sliding of cracks is provided as well.

Proper modelling of rock material behaviour thus demands different approach than
continuum approach used in usual engineering tasks, where Finite Element Method (FEM)
has been considered as the main tool for solving vast majority of applications
[Zienkiewicz and Taylor, 2000, Bathe, 2006, Ibrahimbegovic, 2009]. In order to provide
a reliable predictive model for failure of rock material, the discontinuous solutions should
be found, where pre-existing cracks continue to form into new ones during the increased
loading leading to failure. The evolution of crack patterns shows that localization is a
key factor inducing brittle failure. Thus, the main challenge tackled here was to provide
enhanced predictive models for localized failure by taking into account the material het-
erogeneities and pre-existing cracks. As already elaborated in overview of the numerical
methods of Introduction, some enhanced methods derived from the standard framework of
Finite Element Method (FEM) to deal with localization, i.e. cracks, discontinuities. The
first one is the Finite Element Method with Embedded Discontinuities (ED-FEM), rep-
resenting cracks truly in each element (e.g. see [Simo et al., 1993, Simo and Rifai, 1990,
Ortiz et al., 1987]). The second one is Extended Finite Element Method (X-FEM) where
cracks are represented globally [Moes et al., 1999, Fries and Belytschko, 2006],
[Fries and Belytschko, 2010].

The experiments show that there are two main failure modes that forces a crack
propagation [Stagg and Zienkiewicz, 1968]:

-Mode I - crack opening mode is related to tension where the crack propagates per-
pendicularly to the direction of loading

-Mode II - crack sliding mode is related to shear where the crack propagates parallel
to the crack plane

Very active research on localized failure [Ibrahimbegovic, 2009] has led to currently
dominant approach in representing localized failure by introducing strong discontinuities
or discontinuities in displacement field [Ibrahimbegovic and Markovic, 2003],
[Ibrahimbegovic and Melnyk, 2007]. However, most of these works are limited to single
failure mechanism concentrated on mode I crack propagation [Benkemoun et al., 2010,
Benkemoun et al., 2012]. For the purpose of rock mechanics, it is essential to have both
mode I and mode II failure mechanisms. The novelty in presented model is also a possib-
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a) b) c)

d) e) f)

Figure 2.1: Grainy structure of different rocks: a) breccia (sedimentary), b) conglomerate
(sedimentary), c) limestone (sedimentary), d) gneiss (metamorphic), e) granite (igneous),
f) quartz-diorite (igneous). The size of all of the samples is approximately 5 cm. The

photographs are taken from http://geology.com/rocks/

ility to handle these modes both simultaneously and separately.
This chapter presents a novel 2D plane strain model for the localized failure in rocks

under the influence of heterogeneities and pre-existing defects also presented in
[Nikolic et al., 2015a]. The class of discrete lattice models have been chosen here for
general framework of the model. As elaborated in Introduction, such lattice models
have been previously used in simulating the progressive failure of concrete and rocks,
like shown in [Chang et al., 2002, Ostoja-Starzewski, 2002]. Namely, the basis of this
framework is in representation of heterogeneous material which is considered as as-
sembly of grains of material held together by cohesive links. This framework corres-
ponds also to the geological formation of rocks, where many different groups of rocks
possess a grainy structure which allows the grain recognition even with the bare eye (Fig-
ure 2.1). Here, the rock domain is discretized with the Voronoi cells as rock grains, where
Timoshenko beams act as cohesive links between them (Figure 2.2). Several papers de-
veloped discrete lattice models, where the domain is discretized with the Voronoi cells:
[Vassaux et al., 2015, Cusatis et al., 2006, Berton and Bolander, 2006].

Usually, the discrete lattice models simulate the progressive failure characterized by
localization with re-meshing process [Karihaloo et al., 2003, Lilliu and van Mier, 2003,
Liu et al., 2009]. Namely, the cohesive links are sequentially removed from the mesh
when the discontinuity propagate between the grains. The main difference in the presen-
ted model, with respect to latter approach, concerns embedded discontinuities placed
within the framework of ED-FEM, where Timoshenko beam elements are equipped with
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cohesive links

grains

h

Figure 2.2: The basis of the proposed discrete model relies on the lattice of Timoshenko
beams which represent the cohesive links keeping the rock grains (Voronoi cells) together.

enhanced kinematics capable of capturing the localization effects, like shown in
[Pham et al., 2013, Jukic et al., 2013, Bui et al., 2014]. Namely, the embedded discon-
tinuities are placed in the middle of each Timoshenko beam. This corresponds to the
Voronoi cell network, where each cohesive link is cut by half by the edge between two
neighbouring Voronoi cells. The embedded discontinuity in the longitudinal local direc-
tion enable the grain dilation due to mode I or tensile failure mode. However, Timoshenko
beams also allow to account for pronounced shear effects in both elastic and plastic phase
which is used here for representing the failure in mode II (shear sliding along the grains)
adding the corresponding displacement or strong discontinuity in the transversal local dir-
ection. This leads to novel idea, where re-meshing is avoided, and localized solutions (i.e.
discontinuity propagations) are enabled like shown in Figure 2.3. The latter approach is
also used in the following chapters that enhanced this work towards 3D space and fluid-
rock interaction, as the basis for the mechanics model of rocks.

Heterogeneities are considered here through two different phases representing the ini-
tial state of the specimen; the intact rock material and the initial weaker material that
stands for pre-existing defects. The macroscopic response of the system is largely in-
fluenced by the distribution and position of the phases. The intact rock material, which
is unlikely to fail, is represented by the Timoshenko cohesive links with linear elastic
behaviour and no possibility of de-bonding. Thus, the discontinuity is not supposed to
propagate through the intact. However, the weaker material is presented with the cohes-
ive beam elements which are enhanced with additional kinematics, and also capable of
handling localization through mode I and mode II, as explained above. Failure of the
material can occur in both modes separately, as well as in their combination.

Discontinuity propagation is followed by softening phase if macro response is mon-
itored. First possibility of the model is with separated softening, where modes are in-
dependent of each other, and plasticity-like softening is coupled together with fracture
process zone represented by plasticity hardening, which precedes to localization. Second
possibility implies the multisurface damage-like criterion where fracture limits in mode I
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Figure 2.3: The strong discontinuity propagation between the Voronoi cells invokes the
enhanced kinematics activation

and mode II are made so that the full stress reduction can be done simultaneously. The
latter possibility is suitable for tension applied area of the rock material, while the first
one accounts for compression applied areas, where most dominant failure is achieved
through mode II and compression force may increase and influence the shear failure in
Mohr-Coulomb way.

The softening is subjected to the problem of mesh dependency, when dealing with
standard finite element formulations. The approach presented here is based upon Incom-
patible Mode Method [Simo and Rifai, 1990, Ibrahimbegovic and Wilson, 1991] and em-
bedded discontinuities, leading to no mesh dependency when cracking occurs inside finite
elements. Here, the fracture energy parameters play the key role defining the brittleness
of the failure.

2 2D model formulation
The presented model is based on Timoshenko beam elements connecting the grains of
material in terms of Voronoi cells. This section provides the enhanced formulation for
Timoshenko beam, resulting with embedded discontinuities in local longitudinal direction
for mode I failure, and in transversal direction for mode II failure. Two ways for dealing
with failure modes are possible. First way is to handle these modes separately, where
shear loading invokes mode II failure and at the same time compression force influences
the shear failure threshold in terms of Mohr-Coulomb law. Second way is for dealing
with tension, where simultaneous softening for both modes is enabled through the criteria
presented at the end of this section. The developed model relies on thermodynamics
principles. The localized failure is presented by a softening regime in a global macro-
response, where the heterogeneous displacement field is used in order to obtain a mesh-
independent response. The formulation for fracture process zone with micro-cracks is
also presented here through the hardening regime with standard plasticity.
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2.1 Enhanced kinematics
The localization implies heterogeneous displacement field which no longer remains reg-
ular, even for smooth stress field. Thus, the displacement field ought to be introduced and
written as the sum of a sufficiently smooth, regular part and a discontinuous part. Further-
more, the axial and transversal displacement fields need to be calculated independently.

A straight finite element with two nodes of length le and cross section A is considered
(Figure 2.4). The degrees of freedom at each node i ∈ [1,2] are axial displacement ui,
transversal displacement vi and rotation θi. The strain measures for standard Timoshenko
element are given

ε(x) = du(x)
dx

γ(x) = dv(x)
dx −θ(x)

κ(x) = dθ(x)
dx .

(2.1)

For this element, standard linear interpolation functions are used for regular displacement
approximation

N =
{

N1(x) = 1− x
le ; N2(x) =

x
le

}
. (2.2)

The interpolation for standard beam displacements can thus be written as

u(x) = ∑
2
a=1 Na(x)ua = Nu

v(x) = ∑
2
a=1 Na(x)va = Nv

θ(x) = ∑
2
a=1 Na(x)θa = Nθθθ,

(2.3)

where u, v and θθθ represent nodal displacement vectors.
The discontinuous displacement fields need to be separated into regular and singular

parts, where latter can be represented as a product of Heaviside function and displacement
jump. The enhanced displacement fields can thus be written as

u(x) = u(x)+α(u)Hxc

v(x) = v(x)+α(v)Hxc,
(2.4)

where α(u) and α(v) represent incompatible mode parameters which denote the displace-
ment jumps in axial and transversal direction (Figure 2.4). Hxc is the Heaviside function
being equal to one if x > xc, and zero otherwise, while xc is the position of the discon-
tinuity. The presented model assumes the position of discontinuity to be in the middle of
the beam. This is the case when each cohesive link is cut in half by the two neighbouring
Voronoi cells. Furthermore, the N2(x) is added and subtracted from previous equations
(2.4), which leads to refined formulation of embedded discontinuity

u(x) = u(x)+α(u)N2(x)+α(u)(Hxc−N2(x))
v(x) = v(x)+α(v)N2(x)+α(v)(Hxc−N2(x)),

(2.5)

where second parts of these equations denote the discontinuity contribution. Namely, the
additional interpolation function M(x) is derived from (2.5) and can be used alongside
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standard interpolation functions to describe the heterogeneous displacement fields with
activated discontinuity jump producing embedded discontinuity inside the finite element.
The M(x) is defined as

M(x) =
{
− x

le ;x ∈ [0,xc〉
1− x

le ;x ∈ 〈xc, le]
. (2.6)

This kind of formulation cancels the contribution of incompatible mode parameter on the
element boundary leading to possibility of computing the discontinuity parameters loc-
ally, while the global equations remain with the nodal displacements as primal unknowns.

The deformation fields in terms of regular and singular parts results from (2.4) with

ε(x) = ε(x)+α(u)δxc

γ(x) = γ(x)+α(v)δxc,
(2.7)

where ε and γ denote regular parts, and Dirac delta δxc is the singular part representation
of the deformation field. The Dirac delta function δxc takes an infinite value at x = xc
and remains equal to zero everywhere else. The enhanced finite element displacement
interpolations written in terms of embedded discontinuity

u(x) = ∑
2
a=1 Na(x)ua +M(x)α(u)

v(x) = ∑
2
a=1 Na(x)va +M(x)α(v)

θ(x) = ∑
2
a=1 Na(x)θa.

(2.8)

The discrete approximation of deformation field can be obtained from the above displace-
ment field resulting with

ε(x) = ∑
2
a=1 Ba(x)ua +G(x)α(u)

γ(x) = ∑
2
a=1 (Ba(x)va−Na(x)θa)+G(x)α(v)

κ(x) = ∑
2
a=1 Ba(x)θa,

(2.9)

where G(x) represents the derivative of enhanced function M(x), with respect to local
coordinate direction x

G(x) =G+δxc

=− 1
le +δxc , x ∈ [0, le].

(2.10)

The derivatives B of linear interpolation functions are

B =

{
B1(x) =−

1
le ; B2(x) =

1
le

}
. (2.11)

Finally, the complete set of generalized strains can be obtained

εεε = (ε,γ,κ)T = Bd+Gααα, (2.12)
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Figure 2.4: Timoshenko beam element with standard and enhanced d.o.f.; corresponding
discontinuous shape functions

where

B =

B1 0 0 B2 0 0
0 B1 −N1 0 B2 −N2
0 0 B1 0 0 B2

 , d = (u,v,θθθ)T , ααα = (α(u),α(v),0)T . (2.13)

The enhanced Timoshenko beam finite element, with its standard and enhanced degrees
of freedom, is shown in Figure 2.4, along with the discontinuity functions M and G.

2.2 Equilibrium equations
The virtual deformations are interpolated in the same way as the real ones

δεεε = Bδd+Gδααα, (2.14)

with δ standing for prefix indicating the corresponding virtual field or variation. The
virtual work of internal forces can be written as

Gint =
∫ le

0
δεNdx+

∫ le

0
δγT dx+

∫ le

0
δκMdx =

=
∫ le

0
(Bδd)T

σσσdx+
∫ le

0
δααα

T (G+δxc)σσσdx,
(2.15)

where
δd = (δu,δv,δθθθ)T , δααα = (δα

(u),δα
(v),0)T , σσσ = (N,T,M)T . (2.16)

σσσ denotes the vector of beam stress resultants. The Gint is now separated into classical vir-
tual work of internal forces and additional part that comes from the enhanced kinematics
when discontinuity is activated. The internal force vector and the finite element residual
vector due to discontinuity are given:

fint =
∫ le

0 BT
σσσdx,

h(e) =
∫ le

0 (G+δxc)σσσdx.
(2.17)
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From the condition of residual equation being equal to zero, the internal forces at the
discontinuity ought to be calculated

h(e) =
∫ le

0
(G+δxc)σσσdx =

=
∫ le

0
Gσσσdx+ t.

(2.18)

Vector t represents the internal forces at discontinuity, which are in relation with the forces
from the bulk

t =−
∫ le

0 Gσσσdx, t = (t(u), t(v),0)T ,

h(e) = (h(e)u ,h(e)v ,0)T .
(2.19)

The enhanced finite element virtual work can be obtained from the previous equations as

Gint−Gext = δdT (fint− fext)+δααα
T h(e). (2.20)

2.3 Constitutive model
The brittle rock failure has been a topic of many research studies [Bieniawski, 1967,
Wawersik and Fairhurst, 1970, Lajtai and Lajtai, 1974, Martin and Chandler, 1994]. Dur-
ing the previous studies, it has been concluded that representative behaviour of rock ma-
terial, including the post-peak behaviour, can be separated into five different stages based
upon stress-strain characteristics. These stages were primarily defined as: crack closure,
linear elastic deformation, crack initiation and stable crack growth, critical energy release
and unstable crack growth, failure and post-peak behaviour. Figure 2.5 shows typical
stress-strain curve of the brittle rock under the compression test and its failure stages.

Stage I is associated to microcrack closure and the initial flaws in the material which
continues with stage II, a linear elastic stage. The inelastic behaviour starts at the be-
ginning of stage III and until the end of stage, the hardening response accompanied by
fracture process zone with microcrack initiation, can be observed. With an increase of
a loading program, stage IV is activated. The stress value at the beginning of this stage
(point C) can vary between 50-90% of ultimate strength, while the rest of the stage is
characterized by the nonlinear behaviour and more rapid increase of lateral deformation.
At the point D, the ultimate strength of specimen is reached and the larger macro-cracks
start to propagate through the sample leading to softening of the specimen. At this point,
the volumetric strain starts to reverse from a compressive to dilatation behaviour.

The constitutive relations need to be defined outside and at the discontinuity. The
constitutive models are constructed within the framework of thermodynamics for a stress
resultant beam formulation.

The beam longitudinal and transversal directions are enhanced with additional kin-
ematics, representing modes I and II characterizing softening behaviour, while the rota-
tions keep their standard elastic form. The first two stages of rock failure (up to point B)
are kept elastic, with respect to stage I being finished soon after the loading is applied. The
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Figure 2.5: Stress-strain curve showing the elements of crack development

linear elastic behaviour is finished when the point B is reached, continuing with harden-
ing. When stage III is activated, significant damage caused by micro-crack propagation
starts to occur in the specimen and increases until the highest peak point (point D). The
constitutive model for latter stages, which represents a fracture process zone, is chosen as
classical plasticity model with isotropic hardening. When the critical point is reached, the
complete failure of the specimen is enabled through the exponential softening law. This
invokes the enhanced kinematics activation and occurrence of the displacement jumps.
The carrying capacity of element reduces with increase in the displacement jump.

In the following equations, the development for the failure of the beam in modes I and
II is presented. When the loading starts and softening has not formed yet, the classical
elasto-plastic model is considered. The total strains can be additively decomposed into
elastic and plastic components

ε = ε
e + ε

p

γ = γ
e + γ

p.
(2.21)

Strain energy functions depend upon elastic strains and hardening variables, ξ
(u)

, ξ
(v)

:

ψu

(
ε,εp,ξ

(u))
=

1
2

EA(ε− ε
p)2 +

1
2

ξ
(u),2

K(u)

ψv

(
γ,γp,ξ

(v))
=

1
2

GA(γ− γ
p)2 +

1
2

ξ
(v),2

K(v)
,

(2.22)

where K(u) and K(v) denote isotropic hardening modulus for longitudinal and transversal
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direction. The yield criterion is defined as

Φ
(u)
(

N,q(u)
)
= N−

(
Ny−q(u)

)
≤ 0

Φ
(v)
(

T,q(v)
)
= |T |−

(
Ty−q(v)

)
≤ 0,

(2.23)

where q(u) =−K(u)
ξ
(u)

and q(v) =−K(v)
ξ
(v)

denote stress-like hardening variables, while
Ny and Ty are the forces at yielding point. The state equations are

N = EA(ε− ε
p)

T = GA(γ− γ
p).

(2.24)

The plastic multiplier parameters γ
(u) and γ

(v) that participate in evolution equations ob-
tained from Kuhn-Tucker optimality conditions [Ibrahimbegovic, 2009] should be intro-
duced. The evolution of internal variables is described in detail in the next section.

Once the ultimate failure point is reached, enhanced kinematics needs to be activated.
All further plastic deformation will be accumulated at the discontinuity section, that once
passed the peak resistance. The corresponding strain fields containing regular and singular
components are obtained:

ε = ε+ ε = ε
e + ε

p + ε

γ = γ+ γ = γ
e + γ

p + γ.
(2.25)

The failure criteria for mode I and mode II failure are defined as

Φ
(u)(

t(u),q(u)
)
= t(u)−

(
Nu−q(u)

)
≤ 0

Φ
(v)(

t(v),q(v)
)
=
∣∣∣t(v)∣∣∣−(Tu−q(v)

)
≤ 0,

(2.26)

where Nu, Tu are the ultimate capacity forces and q(u), q(v) are stress-like softening vari-
ables which increase exponentially as

q(u) = Nu

(
1− exp

(
−ξ

(u) Nu

G(u)
f

))
q(v) = Tu

(
1− exp

(
−ξ

(v) Tu

G(v)
f

))
,

(2.27)

and t(u), t(v) are traction forces at the discontinuity obtained from equilibrium equations
(2.19).

2.4 Computational procedure
In this section the operator split solution procedure for finding the solution for a given
problem is presented. The solution will be computed at discrete pseudo-time values
0, t1, t2...t by means of incremental iterative scheme. The local phase will be treated sep-
arately from global phase:
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a) The local (element) computation should provide the values of internal variables at
the end of time step guaranteeing the plastic admissibility of the stress field. Implicit
scheme will be taken for integration of evolution equations. The local computation starts
with a best given iterative value of displacements d(u)

n+1, d(v)
n+1.

Given: d(u)
n+1,d

(v)
n+1,ε

p
n ,γ

p
n ,ξ

(u)
n ,ξ

(v)
n ,α

(u)
n ,α

(v)
n ,ξ

(u)

n ,ξ
(v)

n ,∆t = tn+1− tn

Find: ε
p
n+1,γ

p
n+1,ξ

(u)
n+1,ξ

(v)
n+1,α

(u)
n+1,α

(v)
n+1,ξ

(u)

n+1,ξ
(v)

n+1

b) In the global phase, the current iterative values of nodal displacements are com-
puted while keeping other variables fixed

Given: d(u)
n+1,d

(v)
n+1,α

(u)
n+1,α

(v)
n+1

Find: d(u)
n+1 = d(u)

n +∆d(u)
n+1,d

(v)
n+1 = d(v)

n +∆d(v)
n+1

The subscript n denotes the values of variables at the discrete pseudo time tn. In
the rest of the section, the procedure for calculating internal variables of hardening and
softening will be described in details. First, the elastoplastic part of the task needs to
be solved, and when the ultimate point is reached, localized failure with softening is
triggered. From the previous iterative step, a value of total deformation field is obtained

εn+1 = ∑
2
a=1 Bad(u)

a,n+1 +Gα
(u)
n+1

γn+1 = ∑
2
a=1 Bad(v)

a,n+1 +Gα
(v)
n+1.

(2.28)

The trial value of stress in the Gauss integration point of element (1 Gaus integration
point) is provided

Ntrial
n+1 = EA(εn+1− ε

p
n)

V trial
n+1 = GA(γn+1− γ

p
n).

(2.29)

Further on, the trial value of yield functions are defined as

Φ
(u),trial
n+1 = Ntrial

n+1 −
(

Ny−q(u)n

)
Φ

(v),trial
n+1 =

∣∣V trial
n+1

∣∣−(Ty−q(v)n

)
,

(2.30)

where
q(u)n =−K(u)

ξ
(u)
n

q(v)n =−K(v)
ξ
(v)
n .

(2.31)

If the trial value of the yield function is negative or zero, the elastic trial step is accepted
as final and the internal variables at time tn+1 remain the same as those already computed
at time tn

ε
p,trial
n+1 = ε

p
n , γ

p,trial
n+1 = γ

p
n ,

ξ
(u),trial
n+1 = ξ

(u)
n , ξ

(v),trial
n+1 = ξ

(v)
n .

(2.32)

The trial value of force is accepted as the real value, and the tangent modulus C takes the
corresponding elastic values

Nn+1 = Ntrial
n+1 , Vn+1 =V trial

n+1

C(u)
n+1 = EA, C(v)

n+1 = GA.
(2.33)
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However, if the trial value of yield function is positive, the current step is plastic and
final values of the internal variables at time tn+1 are produced by the plastic flow. The
positive value of the plastic multipliers γ

(u)
n+1 and γ

(v)
n+1 are firstly computed, followed by

the corresponding evolution of the internal variables enforcing the conditions

Φ
(u)
n+1 = Nn+1−

(
Ny−q(u)n+1

)
= 0

Φ
(v)
n+1 = |Vn+1|−

(
Vy−q(v)n+1

)
= 0.

(2.34)

For the linear hardening law, the positive value of the plastic multipliers is obtained for
both longitudinal and transversal direction

γ
(u)
n+1 =

Φ
(u),trial
n+1

EA+K(u)

γ
(v)
n+1 =

Φ
(v),trial
n+1

GA+K(v) .
(2.35)

Once the plastic multipliers are computed, the rest of the internal variables are updated

ε
p
n+1 = ε

p
n + γ

(u)
n+1sign(Ntrial

n+1 )

γ
p
n+1 = γ

p
n + γ

(v)
n+1sign(V trial

n+1 )
(2.36)

and

ξ
(u)
n+1 = ξ

(u)
n + γ

(u)
n+1,

ξ
(v)
n+1 = ξ

(v)
n + γ

(v)
n+1.

(2.37)

Finally the stress value for the plastic step can be calculated and the tangent modulus C
set for the next plastic step

Nn+1 = EA(εn+1− ε
p
n+1), Vn+1 = GA(γn+1− γ

p
n+1)

C(u)
n+1 =

EAK(u)

EA+K(u)
, C(v)

n+1 =
GAK(v)

GA+K(v)
.

(2.38)

When the ultimate stress is reached, the softening part of the task is invoked. From the
equation (2.18), a traction forces acting at the discontinuity are obtained. The trial values
of traction forces are computed as

t(u),trial
n+1 = EA

(
εn+1− ε

p +Gα
(u)
n

)
t(v),trial
n+1 = GA

(
γn+1− γ

p +Gα
(v)
n

)
,

(2.39)

where ε
p and γ

p are the final values of plastic deformation obtained from previous steps
in hardening part, which remains fixed for the following calculations, and α

(u)
n , α

(v)
n are
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the incompatible mode parameters for softening plastic deformation. The trial values of
yield functions are given as

Φ
(u),trial
n+1 = t(u),trial

n+1 −
(

Nu−q(u)n

)
Φ

(v),trial
n+1 =

∣∣∣t(v),trial
n+1

∣∣∣−(Vu−q(v)n

)
,

(2.40)

where

q(u)n = Nu

(
1− exp

(
−ξ

(u)

n
Nu

G(u)
f

))
q(v)n =Vu

(
1− exp

(
−ξ

(v)

n
Vu

G(v)
f

))
.

(2.41)

Identically to the hardening part, if the trial value of the yield functions are negative or
zero, the elastic trial step is accepted for final, with no modification of the plastic strain
from the previous time step.

α
(u)
n+1 = α

(u)
n , ξ

(u)

n+1 = ξ
(u)

n

α
(v)
n+1 = α

(v)
n , ξ

(v)

n+1 = ξ
(v)

n .
(2.42)

The incompatible mode parameter will remain intact, while the traction force will be
changed due to displacement increment.

If the trial values of yield functions are positive, the current step is in the softening
plasticity and there is a need to modify the elastic strain and incompatible mode paramet-
ers α

(u)
n , α

(v)
n in order to re-establish the plastic admissibility at discontinuity. The internal

softening plasticity variables are updated by using evolution equations

α
(u)
n+1 = α

(u)
n + γ

(u)
n+1sign

(
t(u),trial
n+1

)
α
(v)
n+1 = α

(v)
n + γ

(v)
n+1sign

(
t(v),trial
n+1

) (2.43)

and

ξ
(u)

n+1 = ξ
(u)

n + γ
(u)
n+1

ξ
(v)

n+1 = ξ
(v)

n + γ
(v)
n+1,

(2.44)

where γ
(u)
n+1 and γ

(v)
n+1 denote softening plastic multipliers. The values of the plastic multi-

plier are determined from the conditions

Φ
(u)
n+1 = t(u)n+1−

(
Nu−q(u)n+1

)
< tol

Φ
(v)
n+1 =

∣∣∣t(v)n+1

∣∣∣−(Vu−q(v)n+1

)
< tol

(2.45)

while the solutions are found iteratively from two nonlinear equations using the Newton-
Raphson method

Φ
(u)
n+1 = Φ

(u),trial
n+1 +

(
q(u)n+1−q(u)n

)
+EAGγ

(u)
n+1 < tol

Φ
(v)
n+1 = Φ

(v),trial
n+1 +

(
q(v)n+1−q(v)n

)
+GAGγ

(v)
n+1 < tol.

(2.46)
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In the plastic softening step, the traction forces are produced by a change of incompatible
mode parameters α(u) and α(v).

After the local computation is finished and the values of internal variables are ob-
tained, the global phase is summoned in order to provide new iterative values of nodal
displacements. The set of global equilibrium equations is checked with previously com-
puted internal forces ∥∥Anel

e=1( f int,e,(i)− f ext,e)< tol
∥∥ . (2.47)

If the convergence is satisfied, new pseudo-time incremental step is performed. If the sys-
tem still hasn’t converged, the new iterative sweep is performed. From the incremental-
iterative finite element procedure the new values of nodal displacement are obtained. Con-
tribution of one single element can be stated as[

K(e) F(e)

F(e),T H(e)

](i)
n+1

(
∆d(e),(i)

n+1

∆ααα
(e),(i)
n+1

)
=

(
fext,(e)
n+1 − fint,(e),(i)

n+1

h(e),(i)
n+1

)
. (2.48)

The parts of element stiffness matrix are

K(e),(i)
n+1 =

(
∂fint,(e)

∂d(e)

)(i)

n+1

=
∫ le

0
BT Cn+1Bdx,

F(e),(i)
n+1 =

(
∂fint,(e)

∂ααα(e)

)(i)

n+1

=
∫ le

0
BT Cn+1Gdx,

H(e),(i)
n+1 =

(
∂h(e)

∂ααα(e)

)(i)

n+1

=
∫ le

0
GT Cn+1Gdx+Ks

(2.49)

where

Cn+1 =

C(u)
n+1 0 0
0 C(v)

n+1 0
0 0 EI

 , G =

G 0 0
0 G 0
0 0 0

T

(2.50)

Here, the superscript (i) denotes iteration counter.
The static condensation of matrix allows to form the final stiffness matrix for element

contribution to FE assembly

Anel
e=1

(
K̂(e),(i)

n+1 ∆d(e),(i)
n+1

)
= Anel

e=1

(
fext,(e)− fint,(e),(i)

)
(2.51)

where
K̂(e),(i)

n+1 = K(e),(i)
n+1 −F(e),(i)

n+1

(
H(e),(i)

n+1

)−1
F(e),(i),T

n+1 . (2.52)

Solution of (2.48) provides the value of iterative update ∆d(e),(i)
n+1 and the new iteration can

be performed.
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2.5 Anisotropic model with multisurface criterion
The main difference in anisotropic model with multisurface criterion
[Brancherie and Ibrahimbegovic, 2009, Kucerova et al., 2009, Govindjee et al., 1995] is
in providing the full stress reduction simultaneously, where only one softening variable
exist q. The latter is present in both of the failure surfaces, controlling the evolution of
fracture with following failure surfaces

Φ
(u)
n+1 = t(u)n+1−

(
Nu−qn+1

)
Φ

(v)
n+1 =

∣∣∣t(v)n+1

∣∣∣−(Tu− Tu
Nu

qn+1

)
,

(2.53)

where

qn = Nu

1− exp

−ξn
Nu

G(u)
f

 . (2.54)

Such criterion is suitable for tension case where simultaneous failure regarding two modes
is enabled. The solution of the problem is computed by the operator split solution proced-
ure as described in previous section, with the difference in evolution of internal variables

ξn+1 = ξn + γ
(u)
n+1 + γ

(v)
n+1

Tu

Nu
. (2.55)

This leads to a set of two nonlinear equations with two unknowns

Φ
(u)
n+1 = Φ

(u),trial
n+1 +

(
qn+1−qn

)
+EAGγ

(u)
n+1 < tol

Φ
(v)
n+1 = Φ

(v),trial
n+1 +

(
qn+1−qn

)
+GAGγ

(v)
n+1sign

(
t(v),trial
n+1

)
< tol.

(2.56)

It can be noted that, unlike in case with separate failure surfaces, two unknowns are
present in both equations. By setting exp(−ξn

Nu

G(u)
f

) = 0, the initial starting value for

iterative algorithm is obtained, as well as the advantage of three uncoupled equations.

3 Numerical results
In this section, the numerical results for several numerical tests are presented. First, the
validation of the model is shown on simple cohesive link, i.e. beam. The uniaxial ten-
sion, compression and shear tests are then performed on heterogeneous 2D rock speci-
mens. The influence of heterogeneity on macroscopic response and failure mechanisms is
presented on the specimens with different distributions of phase I and II (strong and weak
phase). Finally, the intact rock specimen without pre-existing cracks is put to compres-
sion test. The novel model formulations are implemented into the research version of the
computer code FEAP, developed by R.L. Taylor [Taylor, 2011].
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Figure 2.6: The computed beam response for: a) mode I failure and b) mode II failure

3.1 Validation test on beam with embedded discontinuities

The results for a validation test of a beam, fixed at the left end and subjected to tension
and shear loading, first separately and then simultaneously, on the right end are presented
next. The geometric and material properties of the beam are: l = 1cm (length), b = 1cm,
h = 0.8cm (cross-section width and height), E = 1000kN/cm2, ν = 0.2, σu = 2.2MPa,
τy = 0.22MPa, τu = 0.26MPa, K(u)

= 100kN/cm2, K(v)
= 100kN/cm2, G(u)

f = 15N/m,

G(v)
f = 2N/m. As stated before, the main mechanisms of rock failure are related to mode I

and mode II. Mode I failure takes place when a tension is applied to potential crack which
continues to grow perpendicular to the direction of loading. Mode I also occurs as a result
of movement on the shear plane, when interlocking of asperities result in the propagation
of existing vertical cracks. Dealing with rocks, the most dominant failure occurs under
shear movement along a plane that is inclined with respect to principal stress direction.
This is a mode II failure. As a final possibility, failure can be a combination of these
two modes. The clear insight on crack opening and propagating can be gained in this
beam example. The beam is subjected to imposed displacements on the free end and the
reactions on the fixed end are monitored.

Figure 2.6.a illustrates a beam response when tension is applied and crack opening in
mode I occurs. Shear failure of the beam is presented in Figure 2.6.b. It can be seen from
Figure 2.6.b. that for shear load, the fracture process zone starts when the first yielding
point is reached. The further stress increase allows to reach the ultimate stress and to start
softening phase. Exponential softening drives element to complete failure.

The response of the beams are mesh independent, but initial weakness need to be
introduced in one element, so that the plastic deformation localizes inside only weaker
element, while the rest of the elements elastically unload.

The failure of the beam, which is a combined result of both modes, is shown in Fig-
ure 2.7. More precisely, Figure 2.7.a represents a model response where failure hap-
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Figure 2.7: The computed beam response: a) shear resistance under different levels of
compression force and b) simultaneous softening in mode I and mode II when subjected

to tension

pens in mode II under the influence of compression force. The result confirms that the
shear strength of soil and rock materials corresponds to the one usually defined by Mohr-
Coulomb criterion

τ f = τu +σntgφ (2.57)

where τu is cohesion, σn is normal stress and tgφ is angle of friction. The cohesion
(τu = 0.26MPa) is chosen for a limestone which has a pre-existing cracks lower than
1 mm filled with clay. The simultaneous failure of the beam in both modes is shown
in Figure 2.7.b. Once the tension failure criteria is reached, softening in shear happens
immediately afterwards.

3.2 Preparation of 2D plain strain rock specimens
2D plane strain rock specimens are constructed next. The specimens are of dimensions
10x10 cm (with unit thickness) and are meshed with triangles by means of Delaunay al-
gorithm. The mesh generation is carried out with a GMSH [Geuzaine and Remacle, 2009].
The specimen has 253 nodes and 704 elements (Figure 2.8). Timoshenko beam ele-
ments are positioned on each edge of every triangle in the specimen. Their geometric
properties represent the corresponding part in specimen volume. The main hypothesis
in constructing the lattice model is that the cells connected by cohesive links (beams)
correspond to the representative part of the specimen which have homogeneous prop-
erties, while the heterogeneities are introduced through the cohesive links. Thus, the
Voronoi cells are derived from Delaunay triangulation and the beam cross sections are
computed from the length of the common size of the neighbouring cells (Figure 2.9).
The material parameters are taken the same as in the equivalent standard continuum.
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a) b)

Figure 2.8: A homogeneous 2D plain strain specimen is constructed. Uniaxial tension
(a) and shear test (b) are performed in linear elastic regime to validate the model

h
beam

Figure 2.9: Beam cross sections are computed from the length of the common size of the
neighbouring cells.

This kind of calculating the lattice parameters has already been successfully used by
[Ibrahimbegovic and Delaplace, 2003].

In order to validate the lattice model parameters, the tension and shear tests are con-
ducted in the linear elastic regime on the proposed homogeneous specimen (shown in
Figure 2.8) in two versions: lattice model and equivalent standard continuum model with
triangular solid elements. The material parameters are the same for each test version:
E = 1000kN/cm2, ν = 0.2. The results are presented in Figures 2.10.a and 2.10.b.

The equivalent standard continuum model operate only in linear elastic regime and
its response matches with linear elastic regime of lattice models before the failure phase,
showing that the proposed model is capable of reproducing classical linear elastic con-
tinuum with such computed lattice parameters.

3.3 Numerical tests on heterogeneous specimens

For further tests, heterogeneous specimens are introduced, where the phase II elements
are initially weaker and have a lower value of modulus of elasticity, representing pre-
existing micro-cracks and other defects. The distribution of phase II is spread across the
specimen by a random distribution. The initiation of crack propagation starts when the
loading is applied.
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Figure 2.10: Response of homogeneous specimen in linear elastic regime for a) tension
test and b) shear test in two versions: solid model with triangles and lattice model

Phase I Phase II
E = 1000kN/cm2

E = 7000kN/cm2 ν = 0.2
ν = 0.2 σu = 2.2MPa,τu = 1.15MPa

G(u)
f =10 N/m, G(v)

f =1.5 N/m
dimensions: 0.1 x 0.1 x 0.01 m; 40% phase II

Table 2.1: Uniaxial tension test: mechanical and geometric characteristics

Specimens have been subjected to uniaxial tension, compression and shear tests. In
each test, the global macro response and failure mechanisms have been monitored. Phase
I, being the strong phase, is not likely to break. Micro-cracks will rather start to propagate
through the weaker phase, phase II, passing around the strong phase, phase I, and forming
the bigger macro-cracks which leads to brittle failure of specimen.

3.3.1 Tension test

The heterogeneous specimen with initially 40% of phase II material is subjected to the
imposed displacement of 0.005 cm as shown in the Figure 2.11.a. The dashed lines rep-
resent random distribution of the phase II material. The loading program is completed
through 50 time steps with the linear load increase. Table 2.1 summarizes the mechanical
and geometric characteristics of the specimen used for this experiment. The macroscopic
response, shown as sum of all reactions is shown in Figure 2.11.b.

From the obtained macroscopic results (Figure 2.11.b), it is obvious that the specimen
is practically completely broken at the end of the loading program. The micro-cracks
followed through the phase II material and formed the larger macro-crack that led to
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Figure 2.11: Uniaxial tension test: a) mesh and distribution of phase I and phase II
(dashed line) b) the computed macroscopic response

complete failure of specimen (see Figure 2.15.a).

3.3.2 Compression test

The specimen with the same geometric properties (see Table 2.2 for mechanical and geo-
metric characteristics used in this experiment) and distribution of phase I and phase II
materials is subjected to the imposed displacement of a 0.05 cm, with the loading pro-
gram of 100 equal load steps. The macroscopic response (Figure 2.12.b) suggest that the
specimen is broken. The ductile phase of the response during creation of the fracture
process zone is more pronounced here in compression test, than in tension test. Figure
2.13. reveals the overall tension-compression ratio where macroscopic load versus dis-
placement curve is presented for the same specimen. Thus, not only the ductile part with
fracture process zone creation is larger, but also the overall resistance to compression fail-
ure. The main reason for this is as follows. When the certain element is subjected to shear
and compression simultaneously and crack propagates because of the shear, this leads to
mode II failure. If the crack propagates in mode II, it is still possible to transfer the com-
pression force through the specimen, assuming that two separated blocks formed during
cracking in mode II, lean on each other. However, the compression force in this situation
increases until the point where significant damage on the specimen is made, and until
cracking is extensive enough that loading capacity starts to decrease. For that reasons,
the compression force ought to decrease at certain point, but not momentarily in a sense
of instant reduction to zero which would result in impossible global convergence. Thus
the exponential softening is also added in compression mode, which leads to robust al-
gorithm, guaranteed convergence and the speed of overall tests. The convergence in each
time step is achieved in maximum of 5 iterations. (see Table 2.3 for convergence rate in
a typical time step during softening regime). The mechanism described above allows to
incorporate the Mohr-Coulomb law.

Rock mechanics and failure phenomena



34 2D rock mechanics model

Phase I Phase II
E = 1000kN/cm2

E = 7000kN/cm2 ν = 0.2
ν = 0.2 σy = 1.87MPa,τy = 1.0MPa,K = 100kN/cm2

σu = 2.2MPa,τu = 1.15MPa
G(u)

f =350 N/m, G(v)
f =10 N/m

dimensions: 0.1 x 0.1 x 0.01 m; 40% phase II

Table 2.2: Uniaxial compression test: mechanical and geometric characteristics
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Figure 2.12: Uniaxial compression test: a) mesh and distribution of phase I and phase II
(dashed line) b) the computed macroscopic response
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Figure 2.13: Complete macroscopic response for heterogeneous specimen with 40% of
phase II
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Load step: 33, Iterations: 4, Time increment: 0.01, CPU time(seconds): 1.34
Iteration no. 1 2 3 4
Residual norm 1.5972276E+01 8.2697984E-03 8.2384402E-07 3.0994455E-14

Table 2.3: Convergence rate in a typical time step
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Figure 2.14: The computed macroscopic response with different levels of heterogeneity
for: a) uniaxial tension test and b) uniaxial compression test

3.3.3 Influence of heterogeneity in tension and compression tests

In this example, the influence of heterogeneity on a global response is studied. Three
different specimens with the same geometric properties (same specimen size), but differ-
ent levels of heterogeneity are subjected to uniaxial tension and compression tests. The
corresponding macroscopic results are shown in Figure 2.14.

The specimens are given different initial properties, specifically with 40, 50 and 60%
of phase II material. With an increase of phase II material, the global modulus of elasticity
decreases. This is the result of more elements of phase II representing initial weaker
material, which makes the global response of specimen more ductile and also with a
somewhat lower value of modulus of elasticity. However, it can also be seen from global
exponential curve that, when a ratio of phase II material increases, the failure of the
specimen becomes more ductile in fracture process zone creation, but also more brittle
in the softening response phase, for when the fracture starts the complete failure happens
faster. This is due to appearance of many more potential macro-cracks, which drives more
quickly the stress to zero.

The failure patterns of three different heterogeneous specimens are shown in Figures
2.15. and 2.16. Figure 2.15. presents the final cracks at the end of tension test compu-
tations for the specimens with 40, 50 and 60% of phase II material. It is observed that
one dominant macro-crack is present in all of the specimens inducing the final failure
mechanism. However, in each specimen the macro-crack formed differently depending
on the initial heterogeneity which decides the crack path. Failure due to mode I is more
pronounced in tension test.
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a) b) c)

Figure 2.15: Final failure patterns created in tension test for specimens with: a) 40% of
phase II, b) 50% of phase II and c) 60% of phase II (broken links are red coloured).

Figure 2.16 reveals the final cracks formed at the end of compression tests where not
only one macro-crack is enough to break the specimens. Contrary to tension test crack
patterns, in compression test much more macro-cracks are needed to drive the specimens
to failure and these are influenced more by mode II mechanism, compared to tension test,
which forms the final crack patterns together with mode I. It is important to note that red
coloured links in Figures 2.15. and 2.16. represent the failed beam elements. However,
the actual cracks are localized inside elements and enable the crack propagation between
the Voronoi cells, which are dual to Dealunay triangulation.

In either tension or compression, the difference in reduction of the peak stresses in
different specimens remains fairly mild. Having approximately the same peak resistance
is quite realistic to expect for the similar failure pattern is created once the threshold is
reached. However, the similar peak stresses in compression test leads to conclusion that
despite the variations in heterogeneity, crack propagation patterns in each of the samples
remain similar with similar failure mechanism present in all of them, which can be ob-
served in Figure 2.16. Specifically, this means that more defects were present in the spe-
cimens with more phase II material which made the material softer, but at the same time
these were not crucial for complete failure which was caused by similar macro-cracks in
all specimens. This leads to conclusion that difference in heterogeneity, that was used
here: 40, 50, 60% of phase II, is not as significant to lead to drastically different values
of ultimate stresses. The similarity also comes from the same geometries and loading
programs of the specimens.

3.3.4 Compression test on intact rock specimen

The intact rock specimen with no pre-existing weak material is put to compression test.
Figure 2.17 presents numerically obtained results for intact rock specimen and specimen
with 60% of pre-existing micro-cracks, for comparison. In intact rock specimen, there is
no initial defects, and modulus of elasticity for all elements is the same (70 Gpa). In this
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a) b) c)

Figure 2.16: Final failure patterns created in compression test for specimens with: a) 40%
of phase II, b) 50% of phase II and c) 60% of phase II (broken links are red coloured).
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Figure 2.17: Compression test: intact rock vs 60% of phase II specimen
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Figure 2.18: Shear test: a) macro-crack at the end of test, b) the computed macroscopic
response

analysis the mechanism for failure is also added to intact rock cohesive links. However
fracture limits for intact rock elements are higher (σu = 6.25MPa,τu = 4.37MPa) than
for previous test, where fracture limits corresponded to initial defects of rock mass. As
expected, the global ultimate strength is higher for intact rock specimen, as well as starting
global modulus of elasticity. The computational cost is somewhat higher with both phase
I and phase II allowed to fail with respect for the one of the models used in previous
examples, where the phase I remains elastic. Hence, one can make a judicious choice of
these two models, where the most refined model (with both phase I and phase II equiped
with failure modes) is only used in the last stage of the analysis.

3.3.5 Shear test

Shear test is performed on the specimen with 40% of pre-existing defects. Macro-crack
formed in the lower left angle of the specimen (Figure 2.18.a). The reason that the mac-
roscopic curve of the performed shear test (Figure 2.18.b) did not go all the way down is
because the crack formed in the localized part of the specimen.

4 Final comments on the presented 2D rock mechanics
model

In this chapter, numerical model suitable for describing failure phenomena in heterogen-
eous rocks that initially have some pre-existing cracks, defects, pores etc is presented.
The behaviour of rock is influenced by heterogeneities, and failure mechanisms lead to
displacement discontinuities; thus it is not suitable to represent failure mechanisms with
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phenomenological models that are implemented into widely spread commercial codes.
The continuum model needed to be abandoned in favour of localized failure mechanisms.

In the proposed discrete model, rock material is presented as assembly of material
grains given as Voronoi cells, held together by Timoshenko beams as cohesive links. It
is the convenient way for constructing the discrete model since the Voronoi cells are dual
to Delaunay triangulation. Two phases are used to describe the heterogeneous properties.
Namely, phase I represents the strong phase or intact rock, and phase II stands for pre-
existing defects and weak zones.

The most important ingredients of proposed model for rock failure are the represent-
ation of failure modes and their implementation. In agreement with experiments, there
are two main failure modes, tensile opening and shear sliding mode. The kinematics
of Timoshenko elements is enhanced with discontinuity in displacement field, which is
related to strong discontinuity. Such approach allows for cracks to propagate between
the Voronoi cells (rock grains), which are geometric dual to Delaunay triangulation.
Whenever localized failure is initiated through the given criteria, strong discontinuity
becomes active.

Another important feature pertains to combining the two failure modes. The plasticity-
like model where fracture process zone is presented with isotropic hardening plasticity is
presented first, followed by exponential softening. Each of the failure modes in this case
is handled separately. Moreover, when mode II is active, compression force can still
increase and influence the ultimate shear strength in Mohr-Coulomb way. On the other
hand, damage-like multisurface softening is chosen for tension tests when once ultimate
strength of either of modes is reached, softening for both modes starts leading to complete
failure of element.

As expected, material in compression test was much more resistant than in tension.
This is due to Mohr-Coulomb shear strength law, where shear resistance is increased
alongside compression force. Obviously, the spatial distribution of the cracks will influ-
ence the mechanism of fracture initiation and propagation and it is considered essential to
investigate the aspect of forming cracks to fully understand the failure phenomena.

Different types of rock specimens were tested. The rock specimens with 40, 50 and
60% of pre-existing micro-cracks and one intact rock specimen were put to uniaxial ten-
sion, compression and shear tests. In order to complete macroscopic failure of specimen,
larger macro-crack needs to form from smaller micro-cracks.

The presented model possesses a precisely developed algorithm explained in detail
which achieves a desirable convergence for large simulations where a lot of different
phenomena happens at the same time. The combination of two failure modes in the right
way is crucial to obtain a good converging algorithm, as well as realistic results. This
model can be used for different heterogeneous materials where localized discontinuities
largely affect the behaviour of material, and where the shear effects and sliding along
discontinuities represent important failure cause alongside tension fracture.
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Chapter 3

3D rock mechanics model: full set of 3D
failure mechanisms

In this chapter a full 3D model capable of representing cracks propagating through the
rock until complete localized failure is presented. The model is based upon the discrete

lattice of Timoshenko beams that can capture failure modes by using the embedded
strong discontinuities. The model can also capture the pre-existing cracks and induced
initial heterogeneities with corresponding variability of model parameters. The main

advantage of the proposed failure model is in successful representation of full set of 3D
failure modes, along with progressive development starting from micro-crack initiation
to their coalescence into larger macro-cracks. The complete set of 3D failure modes is

included with: mode I of tensile crack-mouth opening, mode II of in-plane shear sliding
and mode III of out-of-plane shear sliding, along with the mixed-mode fracture

propagation that is often the dominant mechanism in rock failure. Several numerical
examples are provided to illustrate the proposed model performance showing the

influence of pre-existing cracks and other defects upon the final failure mechanism. The
comparison against experimental results is provided for complete model validation.
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Figure 3.1: Rock material is presented as the assembly of mineral grains (3D Voronoi
cells) held together by cohesive links (Timoshenko beams)

1 Model description

The goal of this chapter is to investigate the failure of brittle rocks and to simulate the
3D propagation of discontinuities through the rock taking into consideration the material
heterogeneities and pre-existing defects.

Since the FEM method has restrictions in efficient application of the failure analysis,
cracking and damage induced discontinuities or singularities, like shown in
[Ibrahimbegovic, 2009], the novel approach is adopted. Namely, the discrete lattice ap-
proach presented in the previous section for 2D rock mechanics model has been extended
here to 3D space.

The geological formation of rocks and their grainy structure (Figure 2.1) allow to
construct the discrete lattice model, where the grains are kept together by cohesive forces
forming the rock material. A 3D beam lattice model which corresponds to the rock geo-
logical structure is provided. Namely, the rock domain is discretized with the 3D Voronoi
cells, while the Timoshenko beams act as cohesive links between them (Figure 3.1).

Two papers developed lattice models [Cusatis et al., 2006, Berton and Bolander, 2006],
where the 3D domain is discretized with the Voronoi cells. The main difference in the
proposed model with respect to those works concerns embedded discontinuities placed
within the framework of ED-FEM, where Timoshenko beam elements are equipped with
enhanced kinematics capable of capturing the localization effects [Pham et al., 2013],
[Jukic et al., 2013, Bui et al., 2014].

Thus, the enhanced kinematics in the strain and displacement fields of cohesive links
provide the possibility of discontinuity propagation between the rock grains. This ap-
proach corresponds also to the method of incompatible modes that uses mixed variational
principle where localization inside finite element happen without any mesh dependency
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Figure 3.2: Crack opening in modes I, II and III

[Simo et al., 1993, Simo and Rifai, 1990, Ibrahimbegovic and Wilson, 1991].
The robust operator split solution procedure pertaining to 3D space is presented taking
into account the displacement, or strong discontinuity, at the level of local computation.

In the presented 3D model, three failure modes are introduced through the kinematic
enhancements: mode I representing tensile crack-mouth opening, mode II as shear sliding
along cracks mouth and mode III representing a tearing of material as a result of out-of-
plane shear stress (see Figure 3.2). More precisely, enrichments in the displacement and
strain fields are provided for translational directions x, y and z of the local coordinate
system.

3D Timoshenko beams are chosen as cohesive links because of their ability to ac-
count for pronounced shear effects in both elastic and plastic phase, occurring in thick
beams. The shear contribution can be used to represent failure in modes II and III adding
the corresponding displacement discontinuities. Thus, a set of complex failure patterns
representing a real complex crack evolution in 3D case is provided. Even though a rock
may be subjected to a pure mode I, mode II, or mode III failure, due to the complexity of
the geometry and heterogeneities in rock, the crack growth mostly occurs in mixed mode
[Stagg and Zienkiewicz, 1968]. Thus, in order to understand the failure behaviour of rock
materials, it is necessary to study crack growth under mixed modes I, II and III in the
presence of heterogeneities.

The heterogeneities play a crucial role in making the computational iterative proced-
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ure more robust by eliminating the academic case of localized failure of homogeneous
material under homogeneous stress field. The computational model presented herein is
thus leading to more robust iterative procedure. Moreover, the proposed model is suit-
able for describing any particular microstructure grain size observed in the rock. The
main difficulty is in the best probability distribution of the induced heterogeneities in the
rock in a priori manner; the latter is in sharp contrast with the concrete, or ’man-made’
rock, where the initial distribution can successfully be made in accordance with respect
to the concrete granulometry, both for 2D case [Ibrahimbegovic and Delaplace, 2003] or
3D case [Hautefeuille et al., 2009].

The 3D rock mechanics model, presented in this Chapter, is also presented in
[Nikolic and Ibrahimbegovic, 2015].

2 3D model formulation
In this section, the 3D Timoshenko beam model is presented, taking into account the
additional kinematics for representing the failure modes.

2.1 Kinematics of strong disontinuity
The 3D Timoshenko beams are enhanced with additional kinematics which are capable
of simulating displacement or strong discontinuities to model localized failure. The loc-
alization implies heterogeneous displacement and strain fields which no longer remain
regular even for smooth stress field. The total displacement field u is written as the sum
of smooth regular part u and the localized discontinuous part which is represented as a
product between the standard Heaviside function Hxd and the displacement jump ũ

u(x) = u(x)+ ũ(x)Hxd(x), (3.1)

where

Hxd(x) =
{

1; x > xd
0; x≤ xd,

(3.2)

while xd is the position of discontinuity. The corresponding deformation field that is
produced by such a displacement field can be written as

εεε(x) =
d
dx

u(x)+ ũ(x)δxd(x), (3.3)

where d
dx is a derivative with respect to x and

δxd(x) =
{

∞; x = xd
0; otherwise. (3.4)

The theoretical framework suitable for this kind of enhancement is provided by method
of incompatible modes and Hu-Washizu mixed variational formulation [Washizu, 1982,
Simo et al., 1993] where displacement field is separated from strain and stress virtual
fields.
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Figure 3.3: A 3D 2-node Timoshenko beam

2.2 The finite element approximation
To model the cohesive links, the Timoshenko beam elements are used. Let us consider
one beam element e with length le. All further equations will be expressed in local co-
ordinate system, where the local level will be denoted with superscript e. At the end the
standard local-global transformation will be performed. The standard kinematics for 3D
Timoshenko element (see [Luo, 2008]) when beam cross-sections are symmetrical, or the
element local coordinate axes are selected to pass through the cross-section shear centre
are

ε(x) = du(x)
dx

γy(x) =
dv(x)

dx −θ(x)
γz(x) =

dw(x)
dx +ψ(x)

κx(x) =
dϕ(x)

dx
κy(x) =

dψ(x)
dx

κz(x) =
dθ(x)

dx ,

(3.5)

where the standard beam strain vector is ε =
[
ε γy γz κx κy κz

]T . The chosen
Timoshenko beam element has 2-node interpolation and a single Gauss point integra-
tion, which makes all deformation values constant. The standard displacement field is
interpolated as

u = Nua, (3.6)

where vector u =
[
u v w ϕ ψ θ

]T represent the beam displacements as shown in
Figure 3.3, ua =

[
u1 u2

]T is the nodal displacement vector and Ne is element shape
function matrix

N =


N1 0 0 0 0 0 N2 0 0 0 0 0
0 N1 0 0 0 0 0 N2 0 0 0 0
0 0 N1 0 0 0 0 0 N2 0 0 0
0 0 0 N1 0 0 0 0 0 N2 0 0
0 0 0 0 N1 0 0 0 0 0 N2 0
0 0 0 0 0 N1 0 0 0 0 0 N2

 (3.7)

with N1(x) = 1− x
le , N2(x) = x

le .
The matrix form of beam strain-displacement relation from eq. (3.5) can be written as

ε= Bua, (3.8)
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Figure 3.4: The additional shape functions for displacement jump

where B is the beam strain-displacement matrix

B =


B1 0 0 0 0 0 B2 0 0 0 0 0
0 B1 0 0 0 −N1 0 B2 0 0 0 −N2
0 0 B1 0 N1 0 0 0 B2 0 N2 0
0 0 0 B1 0 0 0 0 0 B2 0 0
0 0 0 0 B1 0 0 0 0 0 B2 0
0 0 0 0 0 B1 0 0 0 0 0 B2

 (3.9)

and B1(x) =− 1
le , B2(x) = 1

le . The beam displacement field ought to be enhanced as shown
in eq. (3.1) and appropriate FE approximation should be performed. First, the eq. (3.1)
can be rewritten by using the N2 shape function as shown in [Pham et al., 2013].

u(x) = u(x)+ ũN2(x)︸ ︷︷ ︸
regular part of total displacement field

+ ũ(Hxd −N2(x))︸ ︷︷ ︸
M(x)︸ ︷︷ ︸

localized part

(3.10)

which results with M(x) function that cancels the contribution of displacement jump ũ on
the boundary of the element (Figure 3.4). The G(x) is a first derivative of M(x).

M(x) =
{
− x

le ;x ∈ [0,xd〉
1− x

le ;x ∈ 〈xd, le]
, G(x) =− 1

le +δxd (3.11)

Such a formulation leads to local contribution of discontinuity. The displacement field
from eq. (3.10) leads to the enhanced strain field corresponding to eq. (3.3). Local
function M(x) introduces the discontinuity enhancement in the middle of the beam. This
corresponds to the Voronoi cell network, where each beam is cut in half by the two neigh-
bouring Voronoi cells.

The kinematics is enhanced here so that the failure modes I,II and III can be simulated,
resulting with displacement jumps in the directions x,y and z of local coordinate frame.
The first part in eq. (3.10) keeps the same boundary values as the total displacement field,
which can now be interpolated as

u = Nua +Mũ. (3.12)
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The interpolated enhanced displacement field (3.12) produces the following interpolated
enhanced deformation field:

ε= Bua +Gũ, (3.13)

where M and G are 6× 6 matrices containing the additional functions M(x) and their
derivatives G(x) at the positions of potential displacement jumps

M =


M 0 0 0 0 0
0 M 0 0 0 0
0 0 M 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , G =


G 0 0 0 0 0
0 G 0 0 0 0
0 0 G 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (3.14)

and ũ =
[
ũ ṽ w̃ 0 0 0

]T is a vector of element displacement jumps in the direction
of local axes.

2.3 Virtual work
The enhanced interpolation for deformation field obtained from (3.13) is used in the same
way to obtain the virtual deformation field

δε= Bδua +Gδũ, (3.15)

where δε, δua and δũ denote respectively the generalized virtual deformation field, regu-
lar part of total virtual displacement field and enhanced part of total virtual displacement
field. The only difference in real and virtual deformation fields concerns the modified
G̃. It is necessary to enforce the orthogonality between the enhanced strain and constant
stress within the element which fulfils the patch test [Ibrahimbegovic and Wilson, 1991].

G̃ = G− 1
le

∫ le

0
Gdx. (3.16)

When the interface is positioned in the middle of an element, condition (3.16) is automat-
ically verified and G̃ remains the same as G. The matrix G will further be decomposed
into two matrices

G = G+δxd . (3.17)

The matrix G contains only the regular parts of function G(x): G(x) =− 1
le . The (δxd)i j =

δi jδxd , where δi j is the Kronecker delta in Cartesian coordinates, and δxd is the Dirac
delta function in 1D centred at xd . The virtual work equation is written at element level
Gint,(e)−Gext,(e) = 0 where

Gint,(e) =
∫ le

0
(δε)Tσdx =

∫ le

0
(Bδua)

Tσdx︸ ︷︷ ︸
standard

+
∫ le

0
δũT (G+δxd)σdx︸ ︷︷ ︸

enhanced

(3.18)
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and σ =
[
N V W Mx My Mz

]T represents element stress resultant vector. The
standard internal force vector fint,(e) is obtained from the standard part of internal virtual
work, while the enhanced part produces the element residual h(e) at discontinuity

fint,(e) =
∫ le

0
BTσdx, h(e) =

∫ le

0
(G+δxd)σ

edx. (3.19)

In order to have the smooth stress field, the condition h(e) = 0 needs to be enforced which
leads to traction vector t =

∫ le

0 δxdσdx at the discontinuity

t =−
∫ le

0
Gσdx (3.20)

The traction vector at discontinuity is in relation with the forces in the bulk and

σ = Cε (3.21)

where C is material matrix of Timoshenko beam

C =


EA 0 0 0 0 0
0 GAξ 0 0 0 0
0 0 GAξ 0 0 0
0 0 0 GIpol 0 0
0 0 0 0 EI11 0
0 0 0 0 0 EI22

 (3.22)

Here, E and G are the modulus of elasticity and shear modulus, A, Ipol , I11, I22 and ξ

are the beam cross section properties, respectively cross-section area, polar moment of
inertia, two mass moments of inertia and shear factor.

2.4 Constitutive model
The behaviour of the material is considered linear elastic up to the beam cross-section
failure point σu =

[
Nu Vu Wu 0 0 0

]T . The cross section failure happens at the
weakest beam point and activates the discontinuity which is positioned in the middle of the
beam at the Gauss integration point. All further plastic deformation will be accumulated
at the position of discontinuity and will thus contain regular and singular components
as shown in eqs. (3.3) and (3.13). It has been shown by [Simo et al., 1993] that, in the
presence of discontinuous field (3.1), the failure functions can be written similarly to
standard plasticity model yield functions. However, the only difference with respect to
standard plasticity is that the softening failure functions now concern the stress resultants
that are localized at the discontinuity xd

Φũ(N,qũ(ũ))|x=xd = [N− (Nu−qũ(ũ))]x=xd
Φṽ(V,qṽ(ṽ))|x=xd = [|V |− (Vu−qṽ(ṽ))]x=xd
Φw̃(W,qw̃(w̃))|x=xd = [|W |− (Wu−qw̃(w̃))]x=xd

,
(3.23)
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where individual failure functions Φũ, Φṽ and Φw̃ are presented for normal direction and
two shear directions; qũ, qṽ and qw̃ are individual stress-like softening variables, which
follow exponential softening law and need to be localized as well

qũ(ũ)|x=xd =
[
Nu

(
1− exp

(
− Nu

G f ,ũ
|ũ|
))]

x=xd

qṽ(ṽ)|x=xd =
[
Vu

(
1− exp

(
− Vu

G f ,ṽ
|ṽ|
))]

x=xd

qw̃(w̃)|x=xd =
[
Wu

(
1− exp

(
− Wu

G f ,w̃
|w̃|
))]

x=xd
.

(3.24)

Here G f ,ũ, G f ,ṽ and G f ,w̃ are the fracture energies, which are computed as

G f ,ũ =
∫

∞

0 Nuexp
(
− Nu

G f ,ũ
|ũ|
)

dũ

G f ,ṽ =
∫

∞

0 Vuexp
(
− Vu

G f ,ṽ
|ṽ|
)

dṽ

G f ,w̃ =
∫

∞

0 Wuexp
(
− Wu

G f ,w̃
|w̃|
)

dw̃.

(3.25)

The softening moduli are obtained as the derivatives of the exponential softening laws
from (3.24) with respect to the corresponding displacement jumps leading to their local-
ized form

Ks,ũ|x=xd =
[

dqũ(ũ)
dũ

]
x=xd

Ks,ṽ|x=xd =
[

dqṽ(ṽ)
dṽ

]
x=xd

Ks,w̃|x=xd =
[

dqw̃(w̃)
dw̃

]
x=xd

.

(3.26)

In order to continue with the embedded discontinuity representation towards computa-
tional development, additional internal plastic parameters will be introduced: α∗ which
can be treated as incompatible mode parameter [Simo and Rifai, 1990]; ξ∗ such that ξ∗ ≡
|α∗|; and λ∗ as the plastic multiplier. The ∗ stands for each of the directional compon-
ents regarding local axes. The presence of discontinuous field causes the softening plastic
strain variables to be localized at the discontinuity while the stress field remains smooth
(for more details see [Simo et al., 1993]). With that in mind, the evolution of localized
internal plastic variables is given as

α̇ũ =
[
λ̇ũsign(tũ)x=xd

]
δxd , ξ̇ũ = λ̇ũδxd

α̇ṽ =
[
λ̇ṽsign(tṽ)x=xd

]
δxd , ξ̇ṽ = λ̇ṽδxd

α̇w̃ =
[
λ̇w̃sign(tw̃)x=xd

]
δxd , ξ̇w̃ = λ̇w̃δxd .

(3.27)

The loading and unloading conditions are

λ̇ũ ≥ 0, Φũ ≤ 0,
[
λ̇ũΦũ

]
x=xd

= 0

λ̇ṽ ≥ 0, Φṽ ≤ 0,
[
λ̇ṽΦṽ

]
x=xd

= 0

λ̇w̃ ≥ 0, Φw̃ ≤ 0,
[
λ̇w̃Φw̃

]
x=xd

= 0.

(3.28)
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2.5 Computational procedure
The local phase of the operator split procedure for finding the numerical solution at pseudo
time tn+1 within the particular loading program is presented next. The operator split is
performed for each directional component individually. The ultimate goal of the local
operator split algorithm is to compute the internal variables and with the newly obtained
values proceed to the global solution procedure. The local computation starts with previ-
ously calculated values α∗,n, ξ∗,n, and the best guess for nodal displacements at next time
un+1, vn+1 and wn+1. The elastic trial state for all of the directional components can be
obtained

εn+1 = ∑
2
a=1 Baua,n+1 +Gαũ,n

γy,n+1 = ∑
2
a=1 Bava,n+1 +Gαṽ,n

γz,n+1 = ∑
2
a=1 Bawa,n+1 +Gαw̃,n

(3.29)

ttrial
ũ,n+1 =

∫ le

0 GEAεn+1dx
ttrial
ṽ,n+1 =

∫ le

0 GGAγy,n+1dx
ttrial
w̃,n+1 =

∫ le

0 GGAγz,n+1dx
(3.30)

Φtrial
ũ,n+1 = ttrial

ũ,n+1− (Nu−qũ,n)

Φtrial
ṽ,n+1 =

∣∣∣ttrial
ṽ,n+1

∣∣∣− (Vu−qṽ,n)

Φtrial
w̃,n+1 =

∣∣∣ttrial
w̃,n+1

∣∣∣− (Wu−qw̃,n) ,

(3.31)

where stress-like softening variables qũ,n, qṽ,n, qw̃,n are defined as shown in eq. (3.24). If
any of the component trial failure functions Φtrial

∗,n+1 ≤ 0, the elastic trial step is indeed the
correct solution with

α∗,n+1 = α∗,n, ξ∗,n+1 = ξ∗,n (3.32)

The ∗ denotes each directional component. In the opposite case when Φtrial
∗,n+1 > 0, the

step is really plastic and the values of internal variables need to be corrected

α∗,n+1 = α∗,n +λ∗,n+1sign
(

ttrial
∗,n+1

)
, ξ∗,n+1 = ξ∗,n +λ∗,n+1 (3.33)

It still remains to compute the plastic multipliers λ∗,n+1. The corresponding value of the
plastic multipliers ought to be determined from the condition Φ∗,n+1 = 0. The iteration is
required to find the solution of a single nonlinear equation with λ∗,n+1 as unknown

Φ∗,n+1 = Φ
trial
∗,n+1 +(q∗,n+1−q∗,n)+C∗Gλ∗,n+1 < tol. (3.34)

The Newton algorithm is used to solve the local nonlinear equations. It takes no more
than 4 iterations to converge on a local level.

2.6 The global solution procedure
After the local computation is completed, the global phase is invoked in order to provide
new iterative values of nodal displacements. The set of global equilibrium equations is
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checked with previously computed internal forces

‖Anel
e=1(f

int,e,(i)(u(i)
n+1−αn+1)− fext,e)‖ ≤ tol, (3.35)

where Anel
e=1 is standard finite element assembly operator and (i) is iteration counter. After

the convergence is achieved, a new incremental step is performed. The finite element
contribution of one element to linearised variational principle can be written in a matrix
form [

Ke Fe

Fe,T He

](i)
n+1

(
∆ue

n+1
∆αααe

n+1

)(i)

=

(
fext,e
n+1 − fint,e,(i)

n+1

he,(i)
n+1(= 0)

)
(3.36)

with the matrices

Ke,(i)
n+1 =

(
∂fint,e

∂u

)(i)
n+1

=
∫ le

0 BT Cn+1Bdx,

Fe,(i)
n+1 =

(
∂fint,e

∂ααα

)(i)
n+1

=
∫ le

0 BT Cn+1Gdx,

He,(i)
n+1 =

(
∂he

∂ααα

)(i)
n+1

=
∫ le

0 GT Cn+1Gdx+K(i)
s,n+1

(3.37)

where Ks,n+1 is the 6x6 matrix of consistent tangent stiffness components for the dis-
continuity (from eq. 3.26) where only first three diagonal members take non-zero values
when the discontinuity is activated (see [Simo et al., 1993]). The static condensation (e.g.
[Ibrahimbegovic and Wilson, 1991]) of system ought to be done in order to eliminate the
incompatible mode parameters α from global equations; this leads to the reduced size of
stiffness matrix which is calculated as follows

K̂
e,(i)
n+1 = Ke,(i)

n+1−Fe,(i),T
n+1 (He,(i)

n+1)
−1Fe,(i)

n+1. (3.38)

Such a reduced stiffness matrix can be sent to the standard finite element assembly pro-
cedure to provide global set of linearised equilibrium equations, compute incremental
displacement ∆u(i)

n+1 and perform corresponding displacement vector update

Anel
e=1K̂

e
n+1∆u(i)

n+1 = Anel
e=1(f

ext,e− fint,e,(i))

=⇒ u(i+1)
n+1 = u(i)

n+1 +∆u(i)
n+1.

(3.39)

2.7 The failure criteria

The 3D simulation of propagation of cracks subjected to shear and tensile stresses is a very
challenging task in fracture mechanics of rocks with material heterogeneities. Failure of
each element can occur in modes I, II or III, as well as in their combination. Namely,
the combination of modes I, II and III occurs more frequently than any pure mode alone,
when cracking process is active. First approach of the model is when full stress reduction
is done with simultaneous softening, which is suitable for tension applied area of the
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Figure 3.5: Tension failure flow chart

rock. The three trial failure surfaces regarding three directions of local frame are defined
in order to activate softening behaviour in tension case

Φtrial
ũ,n+1 = ttrial

ũ,n+1− (Nu,t−qũ,n)

Φtrial
ṽ,n+1 =

∣∣∣ttrial
ṽ,n+1

∣∣∣− (Vu−qṽ,n)

Φtrial
w̃,n+1 =

∣∣∣ttrial
w̃,n+1

∣∣∣− (Wu−qw̃,n) ,

(3.40)

where Nu,t , Vu and Wu are limit values. The trial failure surface is active if it takes greater
than zero value and non-active if it takes less or equal to zero value. In tension case the
first failure surface in (3.40) that becomes active simultaneously activates the other two
surfaces, which leads to full stress reduction of the softening element. Namely, as soon
as one failure surface becomes active, the threshold for other surfaces decrease to current
values of local forces, and thus at the same time step all three failure surface becomes
active (see Figure 3.5).

Second approach of the model is meant for compression case and includes separated
softening case. Namely, the modes of failure are independent of each other and compres-
sion force can still increase if the shear sliding along the cracks is presently happening
and embedded discontinuity for modes II or III is activated. Moreover, the compression
force influences the failure threshold for shear sliding with Mohr-Coulomb friction law:

Vu =Vf +Ntan(φ); Wu =Wf +Ntan(φ) (3.41)

and it magnifies the shear strength. The Vu and Wu represent ultimate shear forces cor-
responding to current compression force, and φ is the angle of friction. The Vf and Wf
are the threshold values when compression force takes zero value. Such a representation
allows to account for further dissipation in frictional sliding along activated crack.
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As seen in eq. (3.41), the compression force increase influences the shear failure
modes. However, the compression force increases until the significant damage is intro-
duced to rock material and until sliding is already extensive enough that loading capacity
of element starts to decrease. Thus, the significant damage of material activates the soften-
ing in compression mode as well:

Φtrial
ũ,n+1 =

∣∣∣ttrial
ũ,n+1

∣∣∣− (Nu,c−qũ,n)

Φtrial
ṽ,n+1 =

∣∣∣ttrial
ṽ,n+1

∣∣∣− (Vu−qṽ,n)

Φtrial
w̃,n+1 =

∣∣∣ttrial
w̃,n+1

∣∣∣− (Wu−qw̃,n)

(3.42)

The Nu,c, Vu and Wu are elastic limit points in compression case. The number of activated
failure surfaces from eq. (3.42) leads to two possible crack propagation mechanisms:
either only one failure surface is activated which leads to cracking in only one pure mode;
two or even three surfaces can be activated leading to mixed mode.

3 Numerical examples
In this section, the results of several numerical examples illustrating the performance of
the model are presented. The series of beam failure tests in different modes are performed
illustrating the capabilities of proposed beam with embedded discontinuities. Further-
more, standardized rock specimens are constructed as an assembly of Voronoi cells held
together by beams and subjected to uniaxial tests and compared to the experiment. The
novel model formulations are implemented into the research version of the computer code
FEAP, developed by R.L. Taylor [Taylor, 2011].

3.1 Embedded discontinuity beam test
The beam of circular cross section is fixed at the one end, and subjected to imposed
displacement on the other end. The chosen geometric properties of the beam are l =
0.8cm, d = 0.55cm, where d is diameter of cross section and other corresponding beam
section properties are computed from diameter. The properties of the proposed beam
material are: E = 5000kN/cm2, ν = 0.2, σu = 17.2MPa, τu = 28MPa, G f ,u = 45N/m,
G f ,v = 1000N/m. The σu and τu are the material ultimate stresses for tension and shear
loading and G f ,u, G f ,v are the fracture energies for pure mode I, and shear modes II
and III. In order to avoid the ambiguity of the failure pattern under homogeneous stress
applied to the beam elements, the slight imperfection is introduced into only one of them.
This allows to avoid the academic case when the uniform load is applied to a series of
homogeneous beam elements resulting in localized failure in different elements at the
same time only decided by numerical round-off errors.

Figure 3.6. illustrates the response of the beam in pure shear and tension tests. It
is observed that the model gives the mesh independent results when the imperfection is
added to one of the beam finite elements and the exponential softening drives the beam
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Figure 3.6: Beam under failure: a) pure shear test, b) pure tension test: imposed displace-
ment vs. computed reaction
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Figure 3.7: Beam under failure: a) Mohr-Coulomb law increasing the shear resistance
under the compression force, b) simultaneous reduction of beam capacity under the ten-

sion force

to complete failure. Moreover, the proposed beam formulation can represent both ductile
and brittle behaviour, depending on the chosen fracture energy.

Furthermore, the beam behaviour under the two different regimes explained in previ-
ous section is examined in the second numerical test on the beam. One regime is under the
influence of compression force when the Mohr-Coulomb friction law is activated implying
that the softening happens separately for each mode failure. The compression force in-
creases the shear resistance threshold. Thus, although sliding along crack is taking place,
the compression force can still increase and influence the sliding process. Figure 3.7.a
shows the increase of shear resistance threshold under the different level of compression
force.

The other failure regime is appropriate for tension tests, where softening happen sim-
ultaneously for all of the modes. The first failure surface from (3.40) activates the other
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Figure 3.8: Beam under failure: a) displacement is imposed at the right end , b) internal
beam forces with respect to time step

two failure surfaces as already elaborated in Section 3.7 and thus momentarily lead to
complete failure of the element. This kind of regime happens in rocks under the ultimate
tension force which is characterized by complete detaching of the blocks once the crack
start to initiate. Figure 3.7.b presents the results of the test when axial tension force is
dominant. It can be observed that as soon as tension force reaches its limit point, the
ultimate shear resistance values take the current force values and softening starts at the
same time (same time step) for all modes.

The third test is performed on a beam where the displacement is imposed at the free
end in all three coordinate directions thus leading to activation of modes II and III under
the compression force. The final values of imposed displacements in [cm] completed lin-
early through 100 time steps are: ux = −0.00032, uy = 0.045, uz = 0.025. The internal
forces of beam are then monitored and presented in Figure 3.8. The compression force
increases through the whole loading program, while the activation of embedded discon-
tinuities for shear failure happens in both modes. Moreover, the internal beam moments
My and Mz reduce at the same time step when the corresponding shear force start to de-
crease, although the discontinuity is not embedded for rotations. The reduction of the
values of internal moments are indirectly influenced by the embedded discontinuities in
shear modes.

The proposed algorithm shows the quadratic convergence in the softening behaviour.
Convergence in a typical nonlinear softening time step for the third beam example, where
mixed mode failure happen under the influence of compression force and Mohr-Coulomb
law, is presented in Table 3.1.
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Iteration number Relative residual norm
1 8.8590270E-01
2 3.4836009E-04
3 8.4321223E-09
4 1.3142199E-15

Table 3.1: Convergence of the Newton-Raphson procedure in a typical softening time
step (t=55) for mixed mode beam failure

3.2 The construction of rock specimens

The cylindrical rock specimens are constructed as an assembly of Voronoi particles held
together by beams with circular cross-sections. The specimen dimensions are: diameter
5.5 cm and the height 13 cm. The beams are generated by computing the 3D Delaunay
triangulation which is performed by Gmsh [Geuzaine and Remacle, 2009] over the spatial
domain of interest. The edges of the produced tetrahedral elements are converted into
the beams whose diameters are computed from the corresponding Voronoi tessellation.
Namely, the common area of the two neighboring Voronoi cells is used to compute the
single beam diameter, from which the beam cross-section parameters are obtained. Such
task is carried out by Qhull [Barber et al., 1996], the code that computes the convex hulls,
Delaunay triangulations and Voronoi diagrams.

3.3 Rock specimen under uniaxial (unconfined) compression and ten-
sion test

In order to evaluate the numerical model against experimental result, the first specimen
(intact specimen named type A) is subjected to uniaxial compression test with no lateral
confinement. The friction at the load platens is not considered in the present numerical
simulations. The three different meshes are constructed for type A specimen: coarse, fine
and the finest (Figure 3.9). The experiment is conducted at the accredited Geotechnical
laboratory of Institute IGH, Croatia [Stambuk-Cvitanovic, 2012], where the series of 43
intact limestone samples are examined in the uniaxial (unconfined) compression tests.

The investigation was focused on the mechanical properties of intact rock and the un-
avoidable, but insufficiently investigated effects on these properties that appear in testing
and can significantly affect the results. Namely, within the 43 limestone samples which
have been experimentally examined, the following mean values are obtained: elastic mod-
ulus E = 50.3 GPa, Poisson’s ratio ν= 0.25, tensile strength σu,t = 12.8MPa, compressive
strength σu,c = 127.8MPa, shear strength τu = 25.3MPa and angle of friction is φ = 35◦.
The dispersal of the experimental results is well correlated with the Gaussian distribu-
tion with the standard deviation of 4% [Stambuk-Cvitanovic, 2012]. Thus, the variability
of material parameters is also introduced into the numerical model through the Gaussian
distribution. The same parameters obtained from the experiments are used for the model
input values. Furthermore, the values of fracture energies have not been the topic of
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Figure 3.9: type A specimen in three different mesh versions: a) coarse (1407 beam
elements), b) fine (4398 beam elements), c) finest (6508 beam elements). The different

input parameter values across the mesh are shown.

interest in the experimental analysis. Thus, the following values have been used in this
numerical tests: G f ,u = 20N/m, G f ,v,w = 600N/m, along with the corresponding variabil-
ity. In order to evaluate the geometric parameters of specimen, as well as computed beam
cross-section parameters, the proposed lattice model is also compared to corresponding
solid model with tetrahedral elements with the same material properties. The results of
the uniaxial compression test are shown in Figure 3.10.

The computed macroscopic response of numerical test for type A specimen matches
with the experimentally obtained result. The numerical test is conducted with imposed
displacement control, where the load is linearly increased. The post-peak behaviour is
very brittle for the limestone material, which is also obtained with the numerical model.
Furthermore, the numerically obtained result matches with the solid model in linear elastic
regime showing that the beam lattice parameters are correctly taken into account. Very
close macroscopic curves are also obtained for three different choices of the finite element
mesh. However, the more brittle response is obtained for coarser meshes, where the slight
difference is brought by the choice of initial heterogeneities in the rock specimens. In
Figure 3.10.b, the crack opening is shown at the end of numerical test. It is observed
that the lower part of specimen is mostly affected with cracking and that the cracks are
irregular throughout the specimen, which is a result of heterogeneity introduced through
the Gaussian distribution of material parameters. The amount of crack opening is large
showing the significant damage on the examined specimen after the conducted numerical
experiment.

The failure mechanism obtained with the numerical model also corresponds to the
experiment (Figure 3.11.a), where the detachment of the material happens due to the
dominant influence of the shear failure. Figures 3.11.a and 3.11.b reveal the two different
specimens tested with the same equipment. It is clear that the failure mechanism depends
on the heterogeneities in rock. Figure 3.10.c presents the distinction between the failed
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Figure 3.10: Uniaxial (unconfined) compression test: a) computed macroscopic response
for type A specimen compared to solid model and experiment , b) crack opening (presen-
ted as euclidean norm of all three failure modes) at the end of numerical test for type A -

finest, c) red marked elements are broken elements due to: mode I, modes II and III

elements in mode I, and failed elements in shear modes II and III. It can be seen that
failure in unconfined compression test happen largely under the influence of shear failure,
while the mode I failure is still significant. Large number of elements are also broken due
to mixed mode failure and these overlap on the two pictures in Figure 3.10.c. It is in-
teresting to note that the seeding of pre-existing heterogeneities makes the computational
procedure more robust. Namely in the homogeneous state, any particular element can be
the first to reach the ultimate stress state and enter the subsequent softening phase. The
practical solution is to introduce the perturbation with the spatially distributed material
heterogeneities, which also physically correspond to the rock structure.

Next, the type A specimen is numerically subjected to unconfined tension test and the
macroscopic curve is shown in Figure 3.12.a. The material in compression test was much
more resistant than in tension, due to the Mohr-Coulomb law inducing shear strength
threshold, where shear resistance increases along the compression force increase. The
crack pattern obtained in unconfined tension test is different than in unconfined compres-
sion, and the one dominant macro-crack propagated through the upper part of specimen.

3.4 Influence of pre-existing defects
Rock is a heterogeneous material containing many initial cracks, voids or other defects.
When the external load is applied to such a material, the micro-cracks initiating from pre-
existing flaws and their coalescence into macro-cracks, lead to total failure. To examine
the influence of pre-existing cracks and defects, four new specimens are considered (see
Figure 3.13).

The grey coloured elements in Figure 3.13. represent the pre-existing defects of the
specimen. First two specimens from the Figure 3.13 (type B and type C) contain the loc-
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Figure 3.11: Failure mechanism for two specimens obtained within the experiment: a)
the detachment of the material is noticed at the lower part of the specimen, b) the diagonal

failure is pronounced

a)

crack_opening

0

0.0232

crack opening [mm]

0.004

0

b)

0 0.01 0.02 0.03 0.04
0

2

4

6

8

10

12

Axial strain (%)

S
tr

e
s
s
 (

M
P

a
)

type A − coarse

type A − fine

type A − finest

Figure 3.12: Uniaxial (unconfined) tension test: a) computed macroscopic response for
type A specimen, b) crack opening (presented as euclidean norm of all three failure modes)
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Figure 3.13: Four heterogeneous specimens with initial pre-existing defects. The grey
coloured elements represent the initial defects
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Figure 3.14: The computed macroscopic response for 4 different heterogeneous speci-
mens under uniaxial compression test

alized defects that are manually positioned in the specific part of specimens. The types D
and E contain the randomly distributed defects throughout the specimen. Such a choice
lead to 2-phase specimens ([Ibrahimbegovic and Matthies, 2012, Feng et al., 2014]) where
phase I elements represent the intact rock parts and the phase II pre-existing defects. Phase
I elements keep the same material parameters as type A specimen, while the phase II have
the negligible properties compared to phase I. Namely, the phase II material properties
are: E = 0.1 GPa, ν = 0.25, σu,t = 0.01MPa, σu,c = 0.1MPa, τu = 0.01MPa. All four
specimens are subjected to unconfined compression test with the results presented in Fig-
ure 3.14.

It can be seen from Figure 3.14. that the overall global mechanic properties depend
upon the position and the amount of pre-existing defects. Not only that the overall com-
pression resistance changes, but also the global modulus of elasticity. All of the four
specimens with pre-existing defects have the lower resistance than intact type A specimen
without pre-existing defects. As soon as the defects are present, the resistance to com-
pression decreases. Type E turns out to be the most resistant due to the lowest amount of
pre-existing defects and its random distribution through the specimen. The least resistant
specimen Type D is the specimen with most defects compared to others. Type B and type
C specimens have somewhat lower resistance than type E. Similar number of phase II
elements are present in types B, C and E but their distribution is different which allows
for types B and C to develop instantly the cracks that lead the specimen to instant failure.

The unconfined compression test of type C specimen is performed with the displace-
ment control within 40 time steps. This specimen is constructed with four pre-existing
flaws positioned on the opposite sides. The crack evolution is monitored during the nu-

Rock mechanics and failure phenomena



Final comments on the presented 3D rock mechanics model 61

crack_opening

0

0.0232

crack opening [mm]

0.01

0

time step = 20 time step = 25 time step = 30 time step = 35 time step = 40

Figure 3.15: Uniaxial compression test - type C: progressive crack propagation shown
through the different stage of numerical test

merical test and the state of the specimen throughout the test is presented in Figure 3.15.
The cracks initiation from the pre-existing defects and coalescence into the final cracking
through the specimen, leads to brittle failure.

4 Final comments on the presented 3D rock mechanics
model

A novel three-dimensional beam lattice model is presented capable of representing the
failure modes of brittle heterogeneous material like rock. Rock material is considered
as an assembly of mineral grains represented by the 3D Voronoi cells, held together by
cohesive forces represented by Timoshenko beams. The main feature of the model is that
the 3D Timoshenko beams (with 6 dofs per node, 3 translations and 3 rotations) are em-
bedded with strong discontinuities in local coordinate system directions which provides
the capability to simulate the localized failure in modes I, II and III. The micro-crack
propagation can happen in all three modes individually, but it can also progress in mixed-
mode. The beam enhancements provide the possibility of simulating the spatial evolution
of cracks in three-dimensional space, which is the main characteristic of brittle failure
of rocks under external load. The failure criteria are different when tension or compres-
sion force is active. In compression applied area, the failure modes are handled separately.
Moreover, the compression force can increase although the shear failure modes are active.
The compression force influences the shear strength threshold in Mohr-Coulomb way. On
the other hand, the tension force imply simultaneous softening for all modes as soon as
one failure surface becomes active. Another feature of the model is that there is no need
to introduce and predict the first cracks to break the specimen, but instead the Gaussian
statistical variation is used for the mechanical properties of the each element. Thus, the
model is able to capture the heterogeneous properties of rocks, which can influence the
initial phase of crack evolution.

The series of uniaxial tests are performed on different rock specimens. Numerically
simulated intact rock specimen under uniaxial (unconfined) compression test is in agree-
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ment with experimentally obtained results. The simulated crack pattern at the end of test
show significant damage on the rock specimen. It is also shown that this crack pattern de-
veloped as the consequence of all three modes. Moreover, the shear modes II and III were
more pronounced in unconfined compression test. The same specimen is subjected to un-
confined tension test. The resistance to tension is much lower than for compression and
the failure pattern shows significant damage at the specimen contour. However, unlike in
unconfined compression, unconfined tension test produces less profound macro-cracks.
Here, one dominant macro-crack leads the specimen to failure.

Four specimens with pre-existing defects are further examined in the series of uncon-
fined compression tests. It is shown the pre-existing defects and flaws largely influence
the overall response. The specimen with specifically positioned flaws (on the opposite
sides of specimen) is examined and internal crack evolution process is successfully sim-
ulated. The cracks initiate from the introduced defect areas and propagate towards other
weak parts forming the global failure mechanism.

The proposed model takes into account many complex phenomena that happen un-
der the failure of rocks. The algorithm for 3D embedded discontinuities is precisely de-
veloped and presented in detail. The model can also be used for other heterogeneous
materials where localized discontinuities influence the behaviour of the material.
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Chapter 4

Influence of specimen shape deviations
on uniaxial compressive strength

In this chapter, the influence of intact rock core specimens shape deviations on uniaxial
compressive strength is studied.
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1 Research motivation

Conducted research presented in [Stambuk-Cvitanovic, 2012] discovered some surprising
results within the aspects of rocks that have already been addressed and even included in
the norms, but not truly examined in detail. Namely, the influence of initial test speci-
men shape deviations on the uniaxial compressive strength (UCS) of intact rock can be
significant. Moreover, it was shown that the latter should be objectively evaluated and
controlled in testing. Although this topics was already investigated, little data on this
specific subject has been published since the 1970s.

Initial specimen shape deviations can be considered as inaccuracies that appear during
the preparation of cylindrical specimens in the forms of ’micro’ deviations from flatness,
perpendicularity and parallelism. The latter typically influences the ’macro’ properties,
including the UCS. The effects of specimen side straightness, ends flatness, ends parallel-
ism and perpendicularity to the specimen axis on UCS and stress-strain curve have been
measured in several actual ways and examined on approximately 90 homogeneous speci-
mens taken from limestone rock. This research refers to limestone and similar rocks with
uniaxial compressive strength ranging from 100 to 150 MPa.

The observations and the results from [Stambuk-Cvitanovic, 2012] was further con-
firmed by a 3D numerical model which is presented in Chapter 3 of this thesis and in
[Nikolic and Ibrahimbegovic, 2015]. The cumulative results were joined in a work with
an aim to examine what is the true effect of specimens shape deviations in subsequent
testing of UCS for the limestone and rocks of similar strength, and to answer the question
how and to what extent (non-)flatness, (non-)parallelism and (non-)perpendicularity of
cylindrical sample affect the change of UCS. The final goal is to achieve optimization and
control over the influence of test specimens (their shape deviations and shape tolerances)
in further testing.

This cumulative research has been published in [Stambuk-Cvitanovic et al., 2015],
while the numerical aspects are covered in the next sections of this Chapter. This in-
cludes the methodology of how to deal with geometrical micro-deviations of the intact
specimens and corresponding numerical results.

2 Preparation of specimens with targeted shape deviations

Special equipment was developed and implemented in the laboratory for the recording of
surface profiles along chosen directions on side and ends of specimen (device for auto-
matic recording and verification of specimens in rock mechanics, patent pending).

For investigation purposes the block of rock was selected (island of Brač, Croatia),
with no visible cracks and structural phenomena of stratification, where ninety usable test
specimens were drilled from these blocks.

To achieve and verify a target specimens shape deviations, specimens were distributed
into groups shown schematically in Figure 4.1.

Samples of group ID (’ideal’) were made without shape deviations, or formed with
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Figure 4.1: Groups of the specimens shape deviations

minimal irregularities which did not affect the mechanical properties.
Group A consisted of specimens that were intentionally made only with non-parallelism

of upper end, while other types of deviations were kept at small values as ID. By increas-
ing the upper end slope in the grinding phase, angular difference of the upper and lower
end slopes was varied from 0.2◦to 2◦.

For samples produced for the B group, the only shape deviation was non-flatness of
the upper end. Height of the surface profile W ranged from 0.03 mm to about 0.5 mm. In
order to assess the impact of type of waviness, surface profiles were intentionally formed
(by a combination of manual and machine treatment) and further separated as convex
(Bkv), concave (Bkk) or mixed-wavelike (Bmj).

Samples from group C were made in such a way that first the upper end was grinded
flat with a slope of 0.5◦to more than 2◦. Then, on the upper end so obtained, different
profiles were formed as convex (Ckv), concave (Ckk) and mixed (Cmj), similar to group
B. W ranged from 0.04 to about 0.3 mm.

Group D comprised specimens with perpendicularity deviation of the lower end to the
axis of the specimen from 0.2◦to over 2◦. Ends were prepared as flat and parallel.

3 Numerical model
Numerical model used herein is the 3D rock mechanics model already presented in this
thesis. However, In order to obtain the proper influence of these slight deviations to the
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ID A

BKV

BKK

D

Figure 4.2: Numerically simulated groups of the specimens shape deviations

behaviour of the specimens, the penalty contact was added to the original presentation of
the model.

Groups ID, A, Bkk, Bkv and D specimens are prepared (Figure 4.2). However, the
roughness of the surface is not taken into account and the contact at the load platens is
frictionless. Thus, only the geometry of deviations is considered. The penalty parameter
is chosen to be the same in all of the conducted numerical tests: p=5000 GPa. Numerical
analysis performed in [Zivaljic et al., 2014] showed that the value of penalty parameter
chosen as p = 100 ·E reduces the relative displacement error below 1%. The initial geo-
metrical deviations of numerical specimens are constructed within the Gmsh mesh ma-
nipulation tool. The deviations for groups A and D are constructed such that the bases of
the specimens are inclined by a desired angle. Group Bkk is also constructed completely
by Gmsh and the curvature of the base is defined inside the mesh tool. For the group
Bkv additional manual interference is needed. It has been observed that the macroscopic
curve for latter group depends on the size of plateau that overlaps with the pressure platen
at the beginning of the test. Since all of the deviations of experimental specimens are
monitored, these data are used to reconstruct the numerical specimens shape deviation in
the case of group Bkv.

All of the numerical tests are performed incrementally, while in each incremental
time step iterative procedure is conducted. The loading program is increased linearly
until the specimen is broken. The load, imposed displacement is applied at one end of the
specimen, while the reaction is monitored on the other end.
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a) b) c)

Figure 4.3: Results for the groups: a) ID, b) A, c) D

4 Numerical results

A control group consisted of 19 ’ideal’ shaped specimens (ID). Examples of stress-strain
diagrams are given in Figure 4.3.a , where numerical result fits well among 10 experi-
mental curves.

Effect of non-parallelism was observed within the group A. For the larger values of
non-parallelism, deviation is so pronounced that it is visible to the naked eye. Even in such
circumstances with the slope of upper specimen end of 2◦, self-adjusting joint adjusts to
the inclination of the upper end without difficulty and testing flow is generally quiet, with
smooth curves. Numerical results for P=1◦and P=2◦(presented together with experimental
results in Figure 4.3.b also show very similar UCS values and stress-strain curves to the
ID numerical specimen with P=0◦, and there is no greater loss of strength due to this kind
of shape irregularity.

The effect of non-perpendicularity was observed within the samples of group D, which
were made as flat specimens of parallel ends, with a growing slope of the lower end as the
only present shape deviation. The resulting curves are given in Figure 4.3.c. Numerical
results for non-perpendicularity of 1◦and 2◦fit to experimental results and ID numerical
results, and there are no greater changes of UCS.

Impact of non-flatness was investigated through the group B. Failure in group B de-
pends on waviness profile type: for Bkv type pushing of upper cone inside, vertical split-
ting outside, and local crushing of the remaining higher edge of the upper end is re-
gistered; for Bkk type local fracture in the form of chamfered edge. The results for this
group are presented in Figure 4.4.
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a) b)

Figure 4.4: Results for the groups: a) Bkk, b) Bkv

5 Final comments on research of shape deviations influ-
ence to the UCS

The research program on 90 homogeneous specimens was conducted to examine what
is the true effect of specimens shape deviations in subsequent testing of UCS for the
limestone and rocks of similar strength.

Novel 3D rock mechanics model developed in this thesis, enhanced with penalty con-
tact elements, was used to simulate and to examine the uniaxial compressive strength of
intact rock core specimens with initial geometrical shape deviations.

The numerical results of conducted analysis are in agreement with experimental res-
ults. Moreover, it has been shown that unconfined compressive strength UCS does not
depend on the angle shape deviations of parallelism and perpendicularity. Contrary, lar-
ger amounts of non-flatness significantly influence the UCS.

Full research on this topic can be found in [Stambuk-Cvitanovic et al., 2015].

Rock mechanics and failure phenomena



Chapter 5

2D Rock mechanics model for the
analysis of fluid-saturated fractured

poro-plastic medium

In this chapter, a discrete beam lattice model capable of simulating localized failure in a
heterogeneous fluid-saturated poro-plastic solid is presented. Coupling conditions

between the solid and fluid phase are governed by the Biot’s poro-elastic theory along
with the fluid flow through cracks. The basis for development of discrete 2D (plane

strain) model representation of heterogeneous material consisting of material grains, is
an assembly of Voronoi cells that are kept together by cohesive links in terms of

Timoshenko beams. Localized failure of saturated medium is enabled through embedded
discontinuities positioned in cohesive links where Timoshenko beam’s longitudinal and
transversal directions posses enhanced kinematics resulting in failure modes I and II.

The model can also properly take into account the fracture process zone with
pre-existing microcracks coalescence prior to the localized failure, which is considered
through the standard poro-plasticity formulation. Fluid flow is spread across the lattice

network by Darcy’s law in terms of continuous pore pressures, where special care is
taken in computing the lattice permeability parameters. Several numerical simulations

are given to illustrate the performance of the presented discrete model.
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1 Model introduction

The flow of the fluid through the deformable porous medium, like rock or soil, modifies
its mechanical properties and response with two coupling mechanisms playing a key role
in this volumetric fluid-structure interaction problem. The first considers the change (in-
crease) of pore pressure inducing the material dilation and the second considers the com-
pression applied to such a material leading to an increase of a pore pressure if the overall
conditions are undrained and also making the material less compliant than in the case of
drained state. This topic has received a great attention in engineering sciences starting
with the pioneering works of Terzaghi [Terzaghi, 1943] and Biot [Biot, 1965], and more
recent overall contribution [Lewis and Schrefler, 1998] including numerical solution pro-
cedure for coupled thermo-hydro-mechanical problems in porous media.

The problem of interest in this paper involves the fluid-saturated porous solid and the
potential development of the localized failure zones. The problems of this kind are many
in civil engineering practice including the dam failures, collapse of foundations, the sta-
bility of excavations, slopes and tunnels, stabilizing the landslides, rock falls etc. Another
applications where volumetric fluid-structure coupling plays an important role are oil and
gas extraction by fracking, nuclear waste disposal, deep well injections of liquid or solid
waste etc. The risk of localized failure that occurs in these engineering problems should
be better understood in order to be prevented. However, for some applications, the loc-
alized failure of soil with macro-cracks needs to be induced. The latter is the case for
oil and gas extraction with fracking or hydraulic fracturing [Secchi and Schrefler, 2014].
The simulations stand as significant tools for obtaining more insight into the full control
of these applications.

Several recent attempt simulations of the behaviour of porous media with a discrete
fractures and remeshing approach and automatic mesh refinement is used by Schrefler et
al. [Schrefler et al., 2006]. This approach has been extended to 3D situation in
[Secchi and Schrefler, 2012]. Extended finite element method (X-FEM) without the need
for remeshing has been used in simulating hydraulic fracturing of fully-saturated
[Rethore et al., 2007] and partially-saturated [Rethore et al., 2008] porous media with co-
hesive cracks, as well as in saturated shear band formations [de Borst et al., 2006]. Em-
bedded discontinuity finite element method (ED-FEM) is an alternative approach to X-
FEM, but with the main difference in the way of computing the unknowns related to
discontinuity opening. Namely, the X-FEM solves them globally, together with the stand-
ard displacement unknowns. Contrary to X-FEM, ED-FEM uses the element-oriented
local algorithm (operator split algorithm) for solution of discontinuity parameters, while
at the global phase the remaining unknowns are nodal displacements. The fluid saturated
poro-elastic and poro-plastic medium with localized failure zones have been simulated
with ED-FEM in [Benkemoun et al., 2015, Callari and Armero, 2002], while the partially
saturated medium can be found in [Callari et al., 2010].

In this chapter, a novel 2D model for localized failure in poro-plastic medium is
presented. This model is also provided in [Nikolic et al., 2015b]. The proposed model
is based upon discrete model for failure of rocks from previous chapters (without fluid
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flow, further referred to as uncoupled model). The uncoupled model is based on discrete
lattice approach where grains of rock are represented by Voronoi cells which are kept
together by cohesive forces represented by Timoshenko beams. The latter are enhanced
with additional kinematics modes that correspond to embedded strong discontinuities and
enable the strain localization in the middle of the cohesive beam element, thus leading
to discontinuity opening between the rock grains. The main strength of the proposed
model is in representing the heterogeneous material properties which directly influence
the formation of localized macro-cracks and make them geometrically irregular. The frac-
ture process zone formation followed by micro-cracks coalescence precedes the localized
failure. The fluid flow through the saturated porous domain with micro-cracks is gov-
erned by a diffusion equation incorporating the Darcy law. The coupled process between
the deforming medium and fluid flow is governed by Biot’s theory [Biot, 1965].

Since the uncoupled model relies on the lattice of beams, the special care must be
taken for fluid flow that also needs to be spread throughout the lattice without loosing the
precision compared to standard 2D flow. This is achieved by the computation of lattice
permeability parameters which are in relation with given permeabilities. Moreover, the
flow over the lattice is compared to the standard continuum flow simulated with CST
elements within the numerical simulations.

2 The porous media formulation
In this section, the equations of the porous solid saturated with a fluid are presented. The
flow conditions allows that convective terms and gravity acceleration be neglected in this
problem. Standard equilibrium equation of two-phase medium is given by relation

∇ ·σ = 0, (5.1)

where the total stress is
σ = σs +σ f = σ

′−bp (5.2)

and subscripts s and f denote the solid and the fluid part, respectively. The effective stress
σs = σ′ measures the material properties of the solid skeleton under drained conditions,
p is fluid pressure and b is Biot coefficient. The continuity equation for the fluid flow can
be written as

∂ζ

∂t
+∇ · v f = 0, (5.3)

where ζ is the amount of fluid content which is defined as the variation of fluid volume
per unit volume of porous material and v f is the fluid flux. The fluid content reads

ζ =
1
M

p+α∇ ·us, (5.4)

where us represents the displacements of the solid and Biot’s modulus M defined as

1
M

=
n f

K f
+

b−n f

Ks
, (5.5)
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cohesive links

grains

h

Figure 5.1: The basis of the proposed discrete model relies on the lattice of Timoshenko
beams which represent the cohesive links keeping the rock grains (Voronoi cells) together.

where n f denotes a porosity, K f is the bulk modulus of the fluid, Ks is a bulk modulus of
the solid and b is a Biot coefficient defined by

b = 1− Kt

Ks
. (5.6)

The Kt is the overall bulk modulus of the porous medium. The inclusion of the fluid
content (5.4) into the fluid continuity equation (5.3) results with

1
M

∂p
∂t

+b∇ · vs +∇ · v f = 0. (5.7)

Vectors vs and v f represent the velocities of the solid and the fluid, respectively. The latter
is defined by the Darcy law

v f =−k f ∇p (5.8)

where k f is the permeability of the porous medium. The boundary conditions apply for
both the solid and the fluid part of the coupled medium.

3 The discrete lattice model description
The main hypothesis in constructing the discrete lattice solid model, referred here by
uncoupled model, is that the Voronoi cells which represent the rock grains connected by
cohesive links taken as Timoshenko beams correspond to the representative part of the
specimen (Figure 5.1).

The fluid flow equation is governed by the Darcy law in terms of continuous pore
pressures across the discrete lattice domain (Figure 5.2). More precisely, the fluid flow
is spread across the lattice of beams, where fluid pressure acts as additional degree of
freedom of the beam. The uncoupled fluid flow across the lattice network is shown within
numerical simulations section, as well as the choice of lattice permeability parameters.
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applied �uid pressure

grains

Figure 5.2: The fluid flow is dispersed across the lattice network of Timoshenko beams

3.1 The discrete lattice mechanical and fluid flow formulations
Let us consider the Timoshenko beam (cohesive link) of cross section area A and length
le. The strong form equilibrium equation in (5.1) can be recast in terms of stress resultants

dN
dx + f (x) = 0
dT
dx +q(x) = 0
dM
dx +T (x)+m(x) = 0

(5.9)

which also be expressed in terms of its weak form∫ le

0

dw
dx

σσσdx =
∫ le

0
wfdx+wF, (5.10)

where σσσ = [N T M]T represents the stress resultant vector, f = [ f q m]T is the distributed
load vector and F = [F Q C]T is the vector of concentrated forces. The right hand
side in (5.10) provides the vector of external forces Fext with the standard finite element
manipulations. The vector w represents a virtual generalized displacements V0 = {w :
[0, le] 7→ R | [w]Γu = 0}, which ought to be differentiable and verify w ∈ V0. The solid
deformation is characterized by the Timoshenko beam strain displacements εεε being a

εεε(x) =

 ε(x) = du
dx

γ(x) = dv
dx −θ

κ(x) = dθ

dx

 , (5.11)

where d = [u v θ]T is generalized displacement vector with its longitudinal displacement,
transversal displacement and rotation. The constitutive relations for the saturated porous
medium (5.2) are given in terms of total stresses, effective stresses and pore pressures
σσσ =σσσ′−bp. The total stress in terms of stress resultants can be decomposed intoN

T
M

=

N′

T ′

M′

−b

pA
0
0

 , (5.12)
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Figure 5.3: The strong discontinuity propagation between the Voronoi cells invokes the
enhanced kinematics activation

where the effective stress resultant components can be obtained through the solid’s skel-
eton ’drained’ elasticities denoted with DskN′

T ′

M′

=

EA 0 0
0 GA 0
0 0 EI


︸ ︷︷ ︸

Dsk

ε

γ

κ

 . (5.13)

Note that E represents Young’s modulus, G shear modulus and I moment of inertia of the
beam.

Using the standard procedure of applying the integration by parts, using the external
boundary conditions and applying the Darcy law for fluid velocities

v f = k f
d p
dx

, (5.14)

the strong form equation from (5.7) takes the weak form for the discrete lattice represent-
ation of the domain

−
∫ le

0
πM−1 d p

dt
dx+

∫ le

0

dπ

dx
αvsdx+

+
∫ le

0

dπ

dx
k f

d p
dx

dx = Qext ,

(5.15)

where π is the virtual pressure field that obeys the same regularity as the virtual displace-
ment field.

3.2 The strong discontinuities in poro-elastoplastic solid
The discontinuous behaviour of the porous material is assumed through the activation of
enhanced kinematics providing the displacement jumps inside the cohesive links shown
in Figure 5.3.
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In order to represent the mode I and mode II failure mechanisms between the Voronoi
cells, the displacement discontinuity is added to the standard beam kinematics, resulting
with displacement decomposition into regular and singular parts

u(x) = u(x)+αααHxc =

 u(x)
v(x)
θ(x)

+
 αu

αv
0

Hxc , (5.16)

where ααα = [αu αv 0] represents the displacement jump at the discontinuity position (in
the middle of the beam) and Hxc is the Heaviside function defined by Hxc(x) = 0 for x≤ xc
and Hxc(x) = 1 for x > xc. The strain field is enhanced through the Dirac delta distribution
resulting from a discontinuous displacement field

εεε(x) = εεε(x)+αααδxc =

 ε(x)
γ(x)
κ(x)

+
 αu

αv
0

δxc . (5.17)

The embedded strong discontinuities thus provide the discontinuous behaviour of the
solid skeleton. The pore pressure field is assumed to remain continuous, apart the dis-
continuous gradients reflecting the localized fluid flow produced inside the crack repres-
enting the displacement discontinuity. The discontinuous flow gradients, affecting the
fluid fluxes, pertain to the post-processing phase, while the computations include the con-
tinuous pore pressure field. Such an approach was adopted by [Callari and Armero, 2002,
Callari et al., 2010] as well, with the motivation from the experimental tests which showed
no ’pressure shocks’ during the localization forming.

The constitutive relations of the elastoplastic solid skeleton including localization
phase are presented next. Prior to the localized failure, formation of micro-cracks in
the fracture process zone, is considered through the classical elastoplastic model. In seek-
ing the compatibility between localized failure in modes I and II, the classical plasticity
in fracture process zone is also introduced to the beam. In other words, the total regular
strains can be additively decomposed into elastic and plastic components

ε = ε
e + ε

p

γ = γ
e + γ

p.
(5.18)

Strain energy functions depend upon elastic strains and hardening variables, ξu, ξv

ψu

(
ε,εp,ξu

)
=

1
2

EA(ε− ε
p)2 +

1
2

ξ
2
uKu

ψv

(
γ,γp,ξv

)
=

1
2

GA(γ− γ
p)2 +

1
2

ξ
2
vKv,

(5.19)

where Ku and Kv denote isotropic hardening moduli for longitudinal and transversal dir-
ections. The yield criteria for the same are defined as

Φu (N,qu) = N− (Ny−qu)≤ 0
Φv (T,qv) = |T |− (Ty−qv)≤ 0,

(5.20)

Rock mechanics and failure phenomena



The discrete lattice model description 77

where Ny and Ty are the forces at yielding point and qu and qv represent stress-like harden-
ing variables. The use of the second principle of thermodynamics for the elastic case
provides the state equations

N = EA(ε− ε
p)

T = GA(γ− γ
p).

(5.21)

and
qu =−Kuξu
qv =−Kvξv.

(5.22)

For the inelastic case, the principle of maximum dissipation is considered, the evolution
laws are obtained as

ε̇
p
= λ̇u

∂Φu
∂N = λ̇usign(N); ξ̇u = λ̇u

∂Φu
∂qu

= λ̇u

γ̇
p
= λ̇v

∂Φv
∂T = λ̇vsign(T ); ξ̇v = λ̇v

∂Φv
∂qv

= λ̇v,
(5.23)

where the plastic multiplier parameters λu and λv have been introduced to participate in
evolution equations obtained from Kuhn-Tucker optimality conditions [Ibrahimbegovic, 2009].
The constitutive equations for the elastoplastic case are

Ṅ =

{
EAε̇; λ̇u = 0

EAKu
EA+Ku

ε̇; λ̇u > 0
, Ṫ =

{
GAγ̇; λ̇v = 0

GAKv
GA+Kv

γ̇; λ̇v > 0.
(5.24)

Accompanying loading/unloading conditions and consistency condition obey λ̇Φ = 0,
λ̇≥ 0, Φ≤ 0, λ̇Φ̇ = 0.

The behaviour at the discontinuity in the cohesive link is written in the framework of
plasticity with softening. Once the softening phase is reached, continuum to discontinu-
ous transition is triggered in the sense of localization of the plastic strain. Subsequently,
increase in strain will lead to decrease in stress. All further plastic deformation will be ac-
cumulated in the section once passed the peak resistance. The corresponding strain fields
which contain regular and singular components can be decomposed

ε = ε+ ε

γ = γ+ γ.
(5.25)

The following failure functions are introduced to detect the softening behaviour

Φu
(
tu,qu

)
= tu−

(
Nu−qu

)
≤ 0

Φv
(
tv,qv

)
= |tv|−

(
Tu−qv

)
≤ 0,

(5.26)

where Nu, Tu are the ultimate capacity forces and qu, qv as stress-like softening variables
obeying the exponential law

qu = Nu

(
1− exp

(
−ξu

Nu
G f ,u

))
qv =Vu

(
1− exp

(
−ξv

Vu
G f ,v

))
.

(5.27)
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Figure 5.4: The enhanced finite element with it’s degrees of freedom and discontinuous
shape function M(x) and it’s derivative G(x)

Variables tu, tv are the traction forces at the discontinuity obtained from equilibrium equa-
tions. The evolution of internal variables in softening states

α̇u =
˙
λu

∂Φu
∂N =

˙
λusign(N);

˙
ξu =

˙
λu

∂Φu
∂qu

=
˙
λu

α̇v =
˙
λv

∂Φv
∂T =

˙
λvsign(T );

˙
ξv =

˙
λv

∂Φv
∂qv

=
˙
λv,

(5.28)

where λ is the plastic multiplier associated with the softening behaviour and α is an equi-
valent to the accumulated plastic strain at the discontinuity.

4 The enhanced finite element formulation

4.1 The finite element interpolations

In this section, the enhanced finite element interpolations to solve the presented coupled
poroplasticity problem with localized failure is presented. The displacements of the solid
skeleton and it’s cohesive links d are interpolated with the standard linear shape functions
{Nd

1 (x) = 1− x
le

, Nd
2 (x) =

x
le
}, and their derivatives {Bd

1(x) =−
1
le

, Bd
2(x) =

1
le
}. Note that

the superscript d denotes the variables related to displacements of the solid skeleton.
The discontinuous contribution brought by the Heaviside function can be recast in a

format which is suitable for embedded discontinuity formulation and local character of
discontinuity unknowns as shown in previous chapters. Such perturbation leads to the
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additional discontinuity shape function M(x) and its derivative G(x), shown in Figure 5.4

M(x) =

{
− x

le ;x ∈ [0,xc〉
1− x

le ;x ∈ 〈xc, le]

G(x) = G+δxc =−
1
le +δxc .

(5.29)

Thus the interpolation of the enhanced displacement field from (5.16) leads to

u(x) = ∑
2
a=1 Nd

a (x)ua +M(x)α(u)

v(x) = ∑
2
a=1 Nd

a (x)va +M(x)α(v)

θ(x) = ∑
2
a=1 Nd

a (x)θa.

(5.30)

The corresponding enhanced strain field follows from the displacement field

ε(x) = ∑
2
a=1 Bd

a(x)ua +G(x)α(u)

γ(x) = ∑
2
a=1
(
Bd

a(x)va−Nd
a (x)θa

)
+G(x)α(v)

κ(x) = ∑
2
a=1 Bd

a(x)θa.

(5.31)

The fluid flow on top of lattice domain is governed by the non-steady diffusion equa-
tion which results from the fluid continuity equation introducing the Darcy law. Latter is
achieved by adding the pressure degree of freedom on top of standard Timoshenko de-
grees of freedom leading to enhanced element, not only in terms of added pressures, but
also in localized discontinuity contributions. The enhanced finite element with all degrees
of freedom is shown in Figure 5.4.

The pressure field is interpolated with the linear shape functions that correspond to the
ones of solid skeleton {N p

1 (x) = 1− x
le

, N p
2 (x) =

x
le
}. The corresponding derivatives are

{Bp
1(x) = −

1
le

, Bp
2(x) =

1
le
}. However, the pressure interpolation functions are denoted

with the superscript p for clearer presentation. Since the fluid flow problem is transient,
the time parameter t is introduced and the discretization field for pressure follows

p(x, t) =
2

∑
a=1

N p
a (x)pa(t). (5.32)

The discretization of the pressure gradient is

∂p
∂x

(x, t) =
2

∑
a=1

Bp
a(x)pa(t), (5.33)

while its time derivative
∂p
∂t

(x, t) =
2

∑
a=1

N p
a (x)ṗa(t). (5.34)

The generalized nodal pressure field can be denoted with p = (p1, p2)
T .
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4.2 The enhanced weak form
The enhanced strain field from (5.31) can be written in its generalized form

εεε = Bdd+Gααα, (5.35)

while the virtual strains obey the same interpolations as the real strains

δεεε = Bd
δd+Gδααα. (5.36)

The δd and δααα denote the nodal virtual generalized displacement and virtual displacement
jumps. The only difference in real and virtual strain fields concerns the modified enhanced
contribution G̃. Namely, it is necessary to enforce the orthogonality between enhanced
strain and constant stress within the element which will fulfil the patch test condition as
already shown for the method of incompatible modes [Ibrahimbegovic and Wilson, 1991]

G̃ = G− 1
le

∫ le

0
Gdx. (5.37)

When the interface is positioned in the middle of an element, condition (5.37) is auto-
matically verified and G̃ remains the same as G. It should be noted that G contains the
enhanced discontinuity function G which can be decomposed into regular part G and
singular part holding the Dirac delta function δxc like shown in (5.29). With such consid-
erations and interpolations the weak form of the internal forces results with

Gint =
∫

le
(Bd

δd)T
σσσdx+

∫
le

δααα
T (G+δxc)σσσdx.︸ ︷︷ ︸

h(e)=0

(5.38)

It follows that internal force vector and the finite element residual vector due to discon-
tinuity are

Fint =
∫ le

0 Bd,T
σσσdx

h(e) =
∫ le

0 (G+δxc)σσσdx.
(5.39)

Reducing the local residual to zero, the vector t =
∫ le

0 δxcσσσdx of the internal forces at the
discontinuity can be obtained through the regular part of the enhanced local function

t =−
∫ le

0
Gσσσdx, t = (tu, tv,0)T . (5.40)

4.3 The finite element equations of a coupled poroplastic problem
In this section, the final finite element implementation aspects accounting for each single
element contribution, further denoted with subscript e, are presented.

The weak form (5.38) leads to the element residual equation

rd = Fext−Anel
e=1

∫ le

0
Bd,T

σσσdx, (5.41)
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where the total stress resultants σσσ are obtained in terms of effective stress resultants σσσ′ and
pore pressures p in (5.12). The symbol Anel

e=1 denotes the finite element assembly operator
for all element contributions. The effective stress resultants σσσ′ are calculated in terms of
regular parts of enhanced strain field (5.35). The enhanced strain parameters ααα, in each
element where localization occurs, are obtained by solving the local equilibrium of the
effective stresses

h(e) =
∫

le
Gσσσ
′dx+ t′, (5.42)

where t′ represent the corresponding effective tractions acting at the discontinuity. The
local equilibrium equation in (5.42) offers the benefit of local computation of the en-
hanced parameters. Subsequent static condensation of these parameters allows to keep
standard matrix at the global level. The local computation algorithm and numerical pro-
cedure are described in the next subsection.

Upon introducing the finite element interpolations, the coupled fluid equation (5.15)
results with the finite element residual form

rp = Qext−Anel
e=1

[∫
le

Np,T M−1Npdxṗe−

−
∫

le
Np,T

αBddxḋe−
∫

le
Bp,T k f Bpdxpe

]
,

(5.43)

where Qext represent the external applied fluxes and imposed pressures. The consistent
linearization of the equations (5.41) and (5.43) leads to a set of linear algebraic equations

r(i)d −Anel
e=1

[
Ke∆de−Le∆αααe−Qe∆pe

]
= 0 (5.44)

and

r(i)p −Anel
e=1

[
1
∆t

QT
e ∆de +

(
He +

1
∆t

Se

)
∆pe

]
= 0 (5.45)

in the increments ∆t = t(i+1)
n+1 − t(i)n+1, where (i) denotes iteration counter within the time

interval [tn, tn+1]. The matrices are evaluated in the previous iteration (i) where all values
are known. The element stiffness matrix Ke is defined as

Ke =
∫ le

0
Bd,T DskBddx (5.46)

and the localized contribution matrix

Le =
∫ le

0
Bd,T DskGdx. (5.47)

The compressibility matrix Se, the permeability matrix He and the coupling matrix Qe are
given by

Se =
∫ le

0
Np,T M−1Npdx, (5.48)
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He =
∫ le

0
Bp,T k f Bpdx, (5.49)

Qe =
∫ le

0
Bd,T bNpdx. (5.50)

The linearization of local equilibrium equation in (5.42) results with

h(i)
e −LT

e ∆de−Fe∆αααe = 0, (5.51)

where

Fe =
∫ le

0
GT DskG+Kdis. (5.52)

Matrix Kdis contains consistent tangent stiffness components for the discontinuity ob-
tained as a derivatives of the exponential softening laws from (5.27) with respect to the
corresponding displacement jumps.

The enhanced strain parameters ∆ααα can be obtained by the local operator split solution
procedure and return mapping algorithm presented in the next section. Finally, the static
condensation strategy serves for local elimination of the enhanced strain parameters which
leads to the final statically condensed equation

r(i)d −Anel
e=1

[(
Ke−LT

e F−1
e Le

)
∆de−Qe∆pe

]
= 0. (5.53)

The final coupled problem in its linearized form can be written in the matrix format

R(i) = Anel
e=1

[
K̂e Qe

1
∆t QT

e He +
1
∆t Se

](i)
n+1

(
∆de
∆pe

)(i+1)

(5.54)

with modified stiffness matrix in its statically condensed form

K̂e = Ke−LT
e F−1

e Le. (5.55)

4.4 The operator split algorithm
The operator split is an element-wise algorithm performed for each directional component
with its ultimate goal of computing the internal variables related to discontinuity. After
computing the internal variables locally, the global solution procedure with Newton in-
cremental/iterative procedure can be performed.

It is assumed that the best iterative value of displacements u(i)n+1 and v(i)n+1 for which
the trial values of the traction forces are obtained

ttrial
u,n+1 =−

∫ le
0 G

[
EA
(

∑
2
a=1 Bd

au(i)a,n+1 +Gαu,n

)]
ttrial
v,n+1 =−

∫ le
0 G

[
GA
(

∑
2
a=1 Bd

av(i)a,n+1 +Gαv,n

)]
,

(5.56)

Rock mechanics and failure phenomena



Numerical simulations 83

where αu,n, αv,n represent the discontinuity parameters at previous time for softening
plastic deformation. Later on, the trial value of failure functions ought to be calculated

Φ
trial
u,n+1 = ttrial

u,n+1−
(
Nu−qu,n

)
,

Φ
trial
v,n+1 =

∣∣∣ttrial
v,n+1

∣∣∣− (Vu−qv,n
) (5.57)

with qu,n and qv,n defined in (5.27). If the trial values of the failure functions are negative
or zero, the elastic trial step is accepted for final, with no modification of the plastic strain
from the previous time step

αu,n+1 = αu,n; ξu,n+1 = ξu,n,

αv,n+1 = αv,n; ξv,n+1 = ξv,n.
(5.58)

The plastic softening parameter will remain intact, while the traction force will be changed
due to displacement increment.

On the other hand, if the trial values of failure functions are positive, the current step
is in the softening plasticity and there is a need to modify the elastic strain and internal
variables αu,n, αv,n in order to re-establish the plastic admissibility at discontinuity. The
internal softening plasticity variables ought to be updated by using evolution equations

αu,n+1 = αu,n +λu,n+1sign
(

ttrial
u,n+1

)
αv,n+1 = αv,n +λv,n+1sign

(
ttrial
v,n+1

) (5.59)

and
ξu,n+1 = ξu,n +λu,n+1

ξv,n+1 = ξv,n +λv,n+1,
(5.60)

where λu,n+1, λv,n+1 are softening plastic multipliers. The value of the plastic multiplier
is determined from the conditions Φu,n+1 ≤ tol and Φv,n+1 ≤ tol and the solutions of a
nonlinear equations are obtained iteratively using the Newton-Raphson method

Φu,n+1 = Φ
trial
u,n+1 +

(
qu,n+1−qu,n

)
+EAGλu,n+1 ≤ tol

Φv,n+1 = Φ
trial
v,n+1 +

(
qv,n+1−qv,n

)
+GAGλv,n+1 ≤ tol.

(5.61)

In the plastic softening step, the traction forces are produced by a change of discontinuity
parameters αu and αv.

5 Numerical simulations
In this section, the results of several representative numerical simulations are presented.
The novel model formulations are implemented into the research version of the computer
code FEAP, developed by R.L. Taylor [Taylor, 2011]
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Figure 5.5: Configuration of the sample for the uncoupled fluid flow problem

5.1 Uncoupled fluid flow across the lattice
In this section, the uncoupled fluid flow across the domain represented by lattice network
is presented. The geometry of the flow problem, along with its boundary conditions is
shown in Figure 5.5. The solution of the problem is found through the solution of the
uncoupled (Biot coefficient is set to b = 0) fluid flow equation (5.43). The fluid pressure
of 1Pa is imposed at the left hand side and kept constant during the time of t = 0.1s in
which the flow is monitored. The Biot modulus is set to M = 10Pa and permeability
K f = 10m2/(Pa · s).

The application of the fluid flow through the domain represented by lattice model
requires the computation of the lattice permeability parameters, in order to obtain the
discrete flow model parameters. The latter ought to be able to compute the nodal pres-
sures and fluid velocities which correspond to nodal values obtained with an underlying
continuum flow. Considering in this example the uncoupled fluid flow, the comparison
between the fluid flow across the lattice and corresponding continuum formulation is per-
formed.

The connection between the lattice and given permeability may start with the final
integrated form of permeability matrix He from (5.49) with

He =
k f A f

le

[
1 −1
−1 1

]
, (5.62)

where A f is the cross section area disposable for the fluid flow. In (5.62) above, the
permeability coefficient can be denoted with

K f =
k f A f

le
. (5.63)

Motivated by the Hammer quadrature rule [Zienkiewicz and Taylor, 2000] for numer-
ical integration on a triangle with 3 integration points, which are placed in the center of
each side of the triangle, the cross section area disposable for fluid flow is defined as the
shortest distance between centroids h f of the two neighbouring triangles multiplied by
the thickness of 1 (see Figure 5.6). Associating K f with given permeability and k f with
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Figure 5.6: The fluid flow disposable cross section area computation
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Figure 5.7: The comparison between the discrete lattice fluid flow and continuum fluid
flow in terms of pore pressures.

lattice permeability, writing down h f = c · le and A f = h f (·1), the following expression is
obtained

K f = k f · c 7→ k f =
K f

c
, (5.64)

with c being the coefficient of modification of permeability for given lattice. Note that
such coefficient differs for every element in the mesh. For the ideal case where two
equilateral triangles share the same side, the value of coefficient c =

√
3/3≈ 0.577.

With newly obtained lattice permeability parameters, the simulation of the fluid flow
across the lattice may be conducted and further compared to the fluid flow obtained with
an equivalent underlying continuum model. Comparison is done in terms of nodal fluid
pressures across the discrete lattice versus continuum model. The results are presented in
Figure 5.7 showing the pressure wave advancing in both cases equally, from the left hand
side, where the pressure was imposed and kept constant, towards the right hand side.

In addition, the 4 nodes are distinguished from the mesh (Figure 5.5), and the pressure
wave evolution in time is plotted in Figure 5.8, resulting with very close curves in both
cases, continuum and discrete.
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Figure 5.8: Pressure time evolution at 4 different nodes

This result allows us to adopt the presented discrete model approach for fluid flow
and apply the same procedure for computing the lattice permeability parameters in the
following examples, dealing with coupled case.

5.2 Uniaxial coupled poroelastic problem

The coupled problem given in this section can be considered as a poroelastic benchmark,
which is proposed by [Zheng et al., 2003]. The uniform load of 4MPa is applied to the top
of the oil-saturated porous sample as shown in Figure 5.9. The horizontal motions of its
side boundaries are restricted, as well as the vertical displacement of the bottom boundary,
all constrained to zero. The fluid is allowed to flow through the upper boundary, while the
bottom and side boundaries remain impermeable. The material parameters of this sample
are listed in Table 5.1.

The goal here is to compare the discrete model results against the result from literat-
ure [Zheng et al., 2003], obtained with the continuum poroelastic model. The proposed
discrete model is employed here, in order to verify its reliability to simulate coupled
poro-elastic problems. In this example the intrinsic permeability is given as a property of
porous media only, not the fluid which flows through it. Thus, the intrinsic permeability
needs to be divided by the dynamic viscosity µ of the fluid to get K f /µ, where µ = ρ ·ν
with ν as the kinematic viscosity. The same procedure of computing the lattice permeabil-
ity parameters with respect to given permeability from the numerical example in previous
section is repeated. In the computations, the GPa are used for pressures and elasticity
constants, and 109 kilogram for mass to avoid the ill-conditioning of the global matrix

Rock mechanics and failure phenomena



Numerical simulations 87

3
m

2m

pervious

im
p
e
rv
io
u
sim

p
e
rv
io
u
s

impervious

Figure 5.9: Configuration of the poro-elastic sample and it’s boundary conditions

Table 5.1: Material parameters considered in the numerical simulations of poro-elastic
sample

Drained Young modulus Esk = 1.44 ·104 MPa
Drained Poisson ratio νsk = 0.2
Biot coefficient b = 0.79
Biot modulus M = 1.23 ·104 MPa
Oil density ρ = 940 kg/m3

Porosity n f = 0.2
Intrinsic permeability K f = 2 ·10−13 m2

Kinematic viscosity ν = 1.3 ·10−4 m2/s
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Figure 5.10: Vertical displacements of the sample after 30 seconds and 10 minutes; the
sample is converging to the totally drained state.
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Figure 5.11: The ’drained’ state of the specimen after 10 minutes: a) vertical displace-
ments, b) pore pressures

that occurs if ISO units are used.
Keeping the external load constant at 4MPa, the state of the sample through the time

is monitored. In Figure 5.10., the vertical displacements of the sample are plotted after 30
seconds and 10 minutes, and compared against the literature results. A fairly matching is
observed.

As time goes to infinity, the vertical displacements increase and the state of the porous
sample settles down at the totally drained condition, with the pore pressure reduced to
zero.

The state of the sample after 10 minutes is shown in Figure 5.11. The vertical dis-
placement of the solid shows a linear variation along the height of the sample. The pore
pressures are zero at the upper fully-drained boundary, while the rest of the sample shows
the values of pressure at almost totally drained state.

5.3 Drained compression test of the poro-plastic sample with the loc-
alized failure

The fluid saturated rock sample under the compression test is considered in this section.
The geometry of the sample and boundary conditions imposed on the displacement and
pore pressure fields are shown in Figure 5.12. The external load is applied via constant
velocity v0 = 5 ·10−4m/s imposed on the top base. With the aim of observing the coupling
effects as well, the tests are then repeated with the imposed constant velocity v0 = 1.5 ·
10−3m/s. The chosen material parameters listed in Table 5.2 correspond to the limestone
fully saturated with the water. The value of hydraulic permeability of the sample obtained
from the parameters in the Table 5.2 is equal to Kh = ρwgK f = 1 · 10−8 m/s, where the
procedure of computing lattice permeabilities is used again.

The ultimate shear strength of geomaterials is defined by the Mohr-Coulomb failure
criterion which states

τ f = τu +σc · tan(φ), (5.65)
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Figure 5.12: Geometry of the poroplastic sample and imposed boundary conditions

where τu represents cohesion-like value of ultimate shear force when compression force
is equal to zero, σc represents the compression force and φ is internal angle of friction.

The final goal is to investigate the influence of heterogeneity upon the localized failure
of the proposed sample. The presented discrete model formulation is capable of consid-
ering the influence of heterogeneity. It has already been shown that the localized failure
with displacement discontinuities can be strongly influenced by the heterogeneity and ini-
tial defects. The latter might be included through the Gauss distribution of the material
parameters as shown in Chapter 1, or through two or multi-phase representation of the
material with different properties as shown in Chapter 2. Here, the two-phase represent-
ation is adopted, where the second phase takes the slightly weaker properties in terms
of material strengths (σu,t = 12 MPa; τu = 24 MPa). The two-phases are distributed
randomly throughout the sample and each phase participates with equal number of ele-
ments. The differences in two samples are brought by the different distributions of the
phases when the random sampling is performed two times in a row. Figures 5.13 and 5.14
show the displacements and pore pressures of the heterogeneous samples 1 and 2 plotted
in the deformed mesh at the final time step of the simulation. These results are obtained
with the imposed constant velocity of v0 = 5 · 10−4m/s. It can be observed from the
deformed meshes of both samples that the localized macro cracks propagate differently
in two cases only because of the slight difference in initial heterogeneity distributions.
Macro-cracks also formed the irregular geometries that propagated through the weaker
parts of the material. The main strength of the presented discrete model is in simulating
the heterogeneous materials where macro-cracks propagate through the material’s weaker
phases, avoid the stiffer ones and exhibit the irregular geometries. When it comes to the
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Table 5.2: Material parameters considered in the numerical simulations of poro-plastic
sample

Drained Young modulus Esk = 50 GPa
Drained Poisson ratio νsk = 0.25
Tensile yield stress σy,t = 12 MPa
Shear yield stress τy = 23 MPa
Hardening modulus K = 5 GPa
Tensile strength σu,t = 13 MPa
Shear strength τu = 25 MPa
Angle of friction φ = 35◦

Fracture energies G f ,u = 300N/m; G f ,v = 600N/m
Biot coefficient b = 0.8
Biot modulus M = 16.9 GPa
Porosity n f = 0.1
Permeability K f = 1 ·10−9 m2/(kPa/s)
Fluid density ρw = 1000 kg/m3

pore pressures, they remain zero at the pervious sides and reach their highest values near
the localized zone.

To investigate the coupling effects, the two heterogeneous samples are put under
compression test with a different rate of imposed vertical displacement on the top base
v0 = 1.5 · 10−3m/s. The macroscopic curves including the cumulative vertical reaction
and pore pressure in the centre of the sample in the close neighboured of the localized
zone are presented in Figure 5.15, for two heterogeneous samples and different imposed
velocities obtained within the compression tests.

The macroscopic vertical reactions indicate that higher rates of imposed displacement
cause the samples to be more resistant (larger ultimate stress) and more ductile (larger
displacement is needed to drive the samples to the failure). This is due to an increase
of pore pressure which is brought by shorter time left for drainage at the sample centre
(Figure 5.15.b).

The pronounced coupling effects are more obvious when it comes to the non-linear
behaviour and formation of localization zone. In the beginning of the test, the vertical
reaction is less influenced by higher pore pressure.

No coupling effect is observed in the geometry of the macro-crack for each sample
when it comes to the localized zone formation. More precisely, the discontinuity still
propagated through the same elements for different imposed velocities.

The differences with respect to heterogeneities seem to increase in the nonlinear zone
with the higher imposed velocity. Namely, the increase of flow through cracks in local-
ization zone, together with the ’faster’ loading, induces the higher rates of pore pressures
making the heterogeneities’ influence even more profound.

As can be seen from Figure 5.16.a, where time history of the crack length is presented,
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Figure 5.13: The state of the 1st heterogeneous sample after the compression test (im-
posed velocity v0 = 5 ·10−4m/s): a) horizontal displacement b) vertical displacement c)
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Figure 5.15: Macroscopic curves of the poro-plastic sample obtained within the com-
pression test a) cumulative vertical reaction vs impose displacement b) pore pressure at

the sample centre vs imposed displacement

cracks start to propagate at some point in time when the external load produces significant
stress triggering the crack. The cracks then propagate quickly through the samples. The
plots for samples with applied faster external load (v0 = 1.5 ·10−3m/s) show, that in these
cases, cracks propagate more quickly and the tests are completed in less time. Figure
5.16.b presents the time evolution of pore pressure in the centre of the sample and in the
close neighboured of the crack, showing the shorter time needed for completion of test
and faster rate of the pore pressure increase.

6 Final comments on the presented failure model of fluid-
saturated rock medium

In this chapter the discrete element model suitable for describing the fracture process with
localized failure zones in heterogeneous fluid-saturated poro-plastic medium is presen-
ted, where coupling between the fluid and solid obey the Biot theory of poroplasticity.
The localized failure mechanisms are incorporated through the enhanced kinematics of
Timoshenko beams that act as cohesive links between the grains of heterogeneous rock
material. The embedded discontinuities can represent the failure modes I and II, as well as
their combination. The fluid flow is governed by the Darcy law with assumed continuous
pore pressure field.

The model ingredients are incorporated into the framework of embedded discontinuity
finite element method, where the computation of the enhanced discontinuity parameters
requires only local element equilibrium. Further use of the static condensation of the
enhanced parameters at the element level, leads to the computationally very efficient ap-
proach and numerical implementation that fits within the standard finite element code
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Figure 5.16: a) Crack length vs time b) pore pressure at the sample centre vs time

architecture.
The main strength of the proposed discrete model lies in its ability to account for

material heterogeneities with localized macro-cracks propagating throughout the weaker
parts of the material and forming the irregular geometries. Such a phenomenon is presen-
ted by the numerical simulations of two samples with equal geometries and material prop-
erties, but slightly different distribution of material heterogeneities throughout samples,
which present different behaviour in terms of localized macro-crack propagation. The
solid-fluid coupling plays important role here as well, bringing the variations in macro-
scopic responses and compliance of the samples. It is important to emphasise that hetero-
geneous effects become more pronounced with the coupling effects and higher rates of
the imposed velocities.
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Chapter 6

Conclusions and future perspectives

1 Conclusions
In this thesis three novel numerical models for localized failure of rocks were presented.
Rock mechanics model for failure of 2D plain strain specimens was presented firstly. This
model was expanded further into 3D space resulting with possibility of simulating full set
of 3D failure mechanisms. Finally, the 2D model for failure of rocks was coupled with a
fluid-flow for analysing the fracture process under the influence of internal flow through
the porous medium.

All three models are constructed within the framework of discrete beam lattice mod-
els, where rock material is presented as assembly of material grains given as Voronoi cells,
held together by Timoshenko beams as cohesive links. This represent the convenient way
for constructing the discrete model since the Voronoi cells are dual to Delaunay trian-
gulation. Localized failure in terms of tensile macro-cracks and shear sliding is allowed
to propagate between the rock grains, cutting the cohesive links by half. The enhanced
kinematics was added for this purpose within the cohesive links, i.e. Timoshenko beams
resulting in embedded discontinuities. Due to this enhancement, re-meshing process is
not needed for proper propagation of discontinuities.

Embedded discontinuities within the cohesive links provide the possibility to simulate
failure in modes I and II for 2D case, and in modes I, II and III for 3D case. Thus,
the full set of failure modes is implemented into these models. The special algorithms
are developed for dealing with compression case with built in Mohr-Coulomb law and
tension case with simultaneous softening in all failure modes.

Heterogeneous rock samples are considered in terms of two-phase composite in 2D
case. Namely, phase I is assumed to be the strong phase, while phase II stands for weaker
phase and representation of pre-existing defects. Gaussian statistical variation is used
for distribution of material heterogeneities in presented 3D model, with mean value and
standard deviation of material parameters which are obtained experimentally. The influ-
ence of pre-existing defects was also investigated appearing to be highly influential for
localized failure mechanisms.

Numerical results obtained with a 2D model were further confirmed by a 3D model,
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where comparison between the numerical and experimental results reveals very good
matching. Moreover, the 3D model was also used in a new research study of influence
of intact specimen shape deviations on unconfined compressive strength. Penalty contact
elements were added to the presented model in order to capture the effects of geomet-
rical micro deviations. It was shown that the model provides a reliable results, which was
confirmed by comparing the numerical results with the experimental ones obtained on 90
rock specimens.

The presented 2D model was finally developed towards the coupling with fluids.
Biot’s theory of poroplasticity was used to handle the coupling conditions resulting with
novel discrete lattice approach for simulating the failure under the influence of internal
fluid flow. It was shown that the presented model can be used in both, poroelasticity
applications, as well as poroplasticity with localized failure.

The main strength of the proposed models is in representing the heterogeneous mater-
ial properties which directly influence the response of the material through the formation
of localized macro-cracks making them geometrically irregular. This is achieved through
the discrete lattice approach and embedded discontinuities within the cohesive links in
presence of all failure modes, including tensile opening and shear sliding.

All presented models posses a precisely developed algorithms explained in detail,
which achieve a desirable convergence for large simulations where a lot of different phe-
nomena happens at the same time.

2 Future perspectives
The presented research and the novel numerical models have a great potential for prob-
ability studies of rock mechanics localized failure phenomena where the probability dis-
tribution of the heterogeneities and its direct influence on the resulting ultimate limit load
computation can be quantified. The great potential also lies in the application of novel
models in the large scale simulations of massive structures, especially for ones interacting
with the fluid, like embankment dams and in hydraulic fracturing. Such a complex simu-
lations require additional improvements to the existing models. The enhancements of the
proposed models could be realized through the couple of stages:

• Development of the 3D model for the analysis of fully fluid-saturated fracture poro-
plastic medium.

• Implementation of the formulations for the partially saturated poroplastic medium
into the existing models. The mechanical behaviour of partially saturated soils can
be very different to that of fully saturated soils, and additionally, the effective stress
principle is no longer applicable.

• Introducing the probability aspects to the models, considering the heterogeneities,
defects and weak zones of the large scale structures, which could be crucial for
failure of such a large and complex structures.
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