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Diskretna optimizacija ovješenih mostova 

Sažetak: 

Ovješeni mostovi su vrlo zahtjevne konstrukcije kod kojih se rasponski sklop ponaša kao 

kontinuirana greda elastično pridržana pomoću zakrivljenih kabela. Predstavljaju estetski 

privlačno i učinkovito strukturno rješenje za  srednje do velike raspone i naširoko se 

upotrebljavaju širom svijeta. Ponašanje ovih konstrukcija određeno je  krutošću nosivih 

elemenata (pilona, rasponskog skolpa i vješaljki) i prijenosu sile u vješaljkama.  

Projektiranje ovješenih mostova je iterativni proces u kojem projektant mora zadovoljiti sve 

kriterije povezane sa sigurnošću, upotrebom i cijenom mijenjajući određene strukturne 

parametre. U slučaju ovješenih mostova projekt mosta uključuje rješavanje  velikog broja 

različitih problema kao što su odabir konstrukcijskog sustava, nelinearnost, proces izgradnje, 

ponašanje konstrukcije pod dinamičkim opterećenjem, itd.  

Projekt takve konstrukcije generira veliku količinu informacija za vrijeme analize i 

projektiranja. Optimizacijski algoritam može uključivati kao projektirane varijable 

mehanička, geometrijska i sekcijeska svojstva. Tako,  one mogu biti upotrijebljene u procesu 

projektiranja za određivanje poprečnog presjeka strukturnih elemenata i/ili određivanje sile 

prednapinjanja u kabelima za dobivanje optimalne duljine i visine stupova i raspona. 

Većina metoda za dobivanje optimalnog rješenja pretpostavlja da su projektirane varijable 

kontinuiranog tipa. Općenito, projektanti su ograničeni na odabir veličine elemenata iz 

diskretnog skupa dostupnih veličina i problem u ovom radu je riješen na takav način. Stroga 

diskretna optimizacija je NP-hard problem (eksponencijalno vrijeme vs  polinomsko vrijeme 

za kontinuiranu optimizaciju) značajni teža nego za kontinuirani problem. 

U ovom radu prikazana je strukturna analiza i diskretna optimizacija ovješenih mostova. Kao 

optimizacijska metoda upotrjebljena je  segmentalna optimizacijska metoda za dobivanje 

optimalnih dimenzija poprečnog presjeka ploče i pilona te konačne sile u vješaljkama. 

Ključne riječi: 

Ovješeni mostovi, diskretna optimizacija, segmentalna optimizacijska metoda 



 

Discrete optimum design of cable-steyed bridges 

Abstract: 

Cable-stayed bridges are highly redundant structures in which the deck behaves like a 

continuous beam elastically supported by the inclined stays. They represent an aesthetically 

appealing and efficient structural solution for medium-to-long spans and are widely used all 

over the world. Their behaviour is governed by the stiffness of the load-bearing elements 

(pylons, deck and cable stays) and the cable force distribution. 

The structural design of cable-stayed bridges is iterative process in which designers have to 

satisfy all criteria’s relating to safety, use, economy, by changing certain structural 

parameters. In case of cable-stayed bridges the design of bridge includes solving a lot of   

different problems such as the choice of structural system, nonlinearity, construction process, 

dynamic behaviour, etc. 

Project of such structures generated massive amount of information during analysis and 

design process. The optimization algorithm can include as design variables mechanical, 

geometrical and sectional properties. Thus, they can be widely used in design process from 

dimensioning of cross-sections of structure elements though determine of prestressing force of 

cables to obtain optimal length and height of towers and spans. 

Most of the methods for the optimum design of engineering structures make the assumption 

that member size variables are continuous. Generally, designers are restricted to choosing 

member sizes from a discrete set of commonly available sizes and this problem is solved here. 

The rigorous discrete optimum design is a NP-hard problem (exponential time vs polynomial 

time for continuous optimization) significantly more difficult than the continuous problem. 

In this work it is presented structural analysis and discrete optimization of concrete cable-

stayed bridge. As optimization method is used segmental optimization method to obtain 

optimal dimensions of deck and tower cross-section and adjustment cable forces. 

Keywords: 

Cable-stayed bridges, discrete optimization, segmental optimization method 
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Chapter 1.  Introduction 

 

 

1.1. General Task 

Cable-stayed bridges are highly redundant structures in which the deck behaves like a 

continuous beam elastically supported by the inclined stays. They represent an aesthetically 

appealing and efficient structural solution for medium-to-long spans and are widely used all 

over the world. Their behaviour is governed by the stiffness of the load-bearing elements 

(pylons, deck and cable stays) and the cable force distribution. 

The cable-stayed bridges made of structural concrete are efficient for spans of 400-500 m. For 

spans from 500 to about 700 m, the concrete deck is heavy and only-steel deck is expensive. 

Therefor the best solution for these spans is composite deck. Advantages of composite deck 

are reduction of the concrete self-weight and greater strength than in steel deck. At spans 

beyond 700 m only economical solution is steel girder with orthotropic deck. The towers are 

performed in concrete with only variation in material of the tray, which can be made of steel, 

concrete or mixture of steel-concrete. Recently the bridges Stonecutters Bridge in Hong 

Kong, Sutong Bridge in China and Russky Bridge in Russia were built with longest span 

more than 1000 m. Russky Bridge has central span of 1044 m and it is currently bridge with 

world largest central span. Concrete has high compressive strength and therefore is ideal for 

transmission of high compressive force introduced by inclined cables to foundations. 

The structural design of cable-stayed bridges is iterative process in which designers have to 

satisfy all criteria’s relating to safety, use, economy, by changing certain structural 

parameters. In case of cable-stayed bridges the design of bridge includes solving a lot of   

different problems such as the choice of structural system, nonlinearity, construction process, 

dynamic behaviour, etc. 

Project of such structures generated massive amount of information during analysis and 

design process. Therefore, mathematical programming techniques ware imposed as natural 

solution for automate this process. The structural optimization is not widely used in civil 

engineering but for large structures, such as cable-stayed bridges, the optimization techniques 

are important due the impact in cost reduction of materials, obtaining economical and safety 
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structure. The optimization algorithm can include as design variables mechanical, geometrical 

and sectional properties. Thus, they can be widely used in design process from dimensioning 

of cross-sections of structure elements though determine of prestressing force of cables to 

obtain optimal length and height of towers and spans.  

Most of the methods for the optimum design of engineering structures make the assumption 

that member size variables are continuous. Generally, designers are restricted to choosing 

member sizes from a discrete set of commonly available sizes and this problem is solved here. 

The rigorous discrete optimum design is a NP-hard problem (exponential time vs polynomial 

time for continuous optimization) significantly more difficult than the continuous problem. 

The rounding process turns out to be a combinatorial problem of considerable size even for 

the simplest of such structures. The continuous optimum design forms a lower bound to the 

discrete optimum and it is usually assumed that the continuous sizes should be somehow 

rounded up or down to discrete sizes, consequently providing a good starting design for a 

discrete solution of low weight. The continuous optimum design variables are rounded up or 

down to the nearest available discrete sections to find a discrete solution which may be 

unfeasible. This solution is then improved by optimizing the cable installation forces 

(continuous variables) to meet the stress and displacements criteria. If this solution remains 

unfeasible, the segmental method which uses linear programming is adopted to find the sizing 

variables which need to be modified. 

The application of optimization algorithms for the project of cable-stayed bridges was studied 

by several authors. All that work considered or cable forces (installation or adjustment) or 

cross-section dimensions mostly of steel bridges. For concrete cable-stayed bridges studies 

are rare and do not include particular issues connected with the analysis of construction 

phases or distribution of the forces and displacement of concrete elements. Also time effects 

of concrete are not included. 

In this work it is presented structural analysis and discrete optimization of concrete cable-

stayed bridge. As optimization method is used segmental optimization method to obtain 

optimal dimensions of deck and tower cross-section and adjustment cable forces. 
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1.2. Thesis overview 

Due to the high degree of indeterminacy of cable-stayed structures, an extensive degree of 

understanding for both design and construction is required. In comparison to other types of 

conventional bridges, cable-stayed bridges demand sophisticated structural analyses and 

design techniques. 

With an optimized adjustment of the cable forces, it is possible to achieve an “ideal state”, at 

which the girder and the pylon are compressed with little bending only. The “ideal state” of a 

cable-stayed bridge is associated with the minimized total bending energy accumulated along 

the girder. This results in a possible design of slender decks. The materials for the deck and 

the pylons can be efficiently utilized. 

With an optimization of cross-section dimensions it is accomplished reduce of self-weight of 

cable-stayed bridge elements (deck and pylon) which has influence on level of the 

displacements and stresses of deck and pylon. Also with optimization it is possible to reduce 

amount of material of bridge elements. 

In this thesis was considered optimization of deck and pylon cross-section and adjustment 

forces of cable stays. All design variables were taken as discrete design variables. For 

determination of optimal design variables was used segmental method. Results are obtained 

solving multi-objective function using linear programming in MATLAB. 

1.3. Thesis organization 

This thesis consists of four chapters, shortly described in following text. 

Chapter 1 of this thesis contains introductory information. It provides the reader with 

overview of structural and optimization analysis of concrete cable-stayed brides. 

Chapter 2 covers literature review relating to study traces of bridges, in particular of concrete 

bridges performed. Start with the historical background of cable-stayed bridge construction, 

outlining the developments of this type of bridge in last decades and gives the salient 

examples for each era. Different erection procedures are also outlined. It should be a review 

of the major works in relation to the two major themes of this work, structural analysis and 

optimization of concrete cable-stayed bridges. 
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Chapter 3 contains structural analysis of concrete cable-stayed bridge and description of 

optimization process including all necessary steps in that process. Also in this chapter are 

described goals which have to be reached with optimization. 

Chapter 4 describes numerical example of on specific concrete cable-stayed bridge and results 

with conclusion obtained with optimization. In final chapter is given bibliography references.
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Chapter 2.  Literature review 

 

 

2.1. Introduction 

In this chapter is showed state of knowledge related to the theme of these thesis particularly 

concrete cable-stayed bridges. This type of structures was already described in several works 

(Gimsing, 1997; Podolny and Scalzi, 1986; Troitsky 1988; Walther et al, 1999). However, 

these structures are very complex and for better understanding problems designers encounter 

in their work, this thesis is divided in sub-chapters. Each sub-chapter describe one specific 

aspect of cable-stayed bridge or optimization process. First sub-chapter is a brief of historical 

review of construction of cable-stayed bridges. In second sub-chapter is presented general 

characteristics of structural function (transmission of forces) and typical structural types of 

various structural elements. After this follow reviews of previous work related to concrete 

cable-stayed bridges and optimization. They are divided in two themes which are developed 

in this thesis. First is analysis and second is structural optimization of cable-stayed bridges. At 

the end of this chapter is given summary of most important points of work. 

2.2. Historical review 

The history of stayed beam bridges indicates that the idea of supporting a beam by inclined 

ropes or chains hanging from a mast or tower has been known since ancient times. The 

Egyptians applied the idea for their sailing ships. In seventeen century was first introduced a 

bridge system having a timber deck supported by inclined eyebars by Verantius. His 

proposing contains the main features and basic principles of metal suspension bridge stiffened 

by stays. First attempt of build cable-stayed bridge was in Germany, by Immanuel Loscher in 

1784. He designed a timber bridge with timber stays inclined in timber tower with span of 32 

m. One more attempt was in 1817 with system of inclined chains which were adopted in a 

bridge built at Dryburgh Abbey across the Tweed River with span of 79.3 m. 
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Figure 2.1 –Bridge over the Tweed river (Wikipedia, 2015) 

 

 In nineteen century appeared new kind of bridges design. That was hybrid system which is 

combination of cable-stayed bridges and classical suspension bride. Examples of these 

bridges are the Franz Joseph Bridge, built in 1868 in Prague, Czech Republic, the Albert 

Bridge, built in 1873 at Chelsea, England. In these designs were evident lack of knowledge in 

calculation of bridges and lack of knowledge about behaviour of bridges which led to collapse 

of these bridges and postponed construction of this kind of structures. 

Progress of using form of cable-stayed bridge happened in second half of nineteen century in 

America by famous bridge designer Roebling where he used hybrid solution. He used inclined 

cables to decrease deformability of the deck. The Brooklyn Bridge in New York built in 1883, 

was example of this kind of bridge.  

 

Figure 2.2 – Brooklyn bridge (www.boomsbeat.com, 2015) 

 

 

http://www.boomsbeat.com/
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First modern cable-stayed bridges built in concrete were in 1920s by Eduardo Torojja, 

aqueduct Tampul on the river Guadalete, in Spain and by Albert Caquot in 1952, Donzère 

Canal Bridge, in France. However, real development came from Germany with Franz 

Dishchinger and with series of steel bridges across the river Rhine. Dischinger published 

studies of bridge construction in 1938, in which he proposed using high strength steel cables 

subjected to pre-initial efforts in order to increase their effective stiffness, thereby improving 

their suspension up effect (Billington and Nazmy, 1990; Virlogeux, 1999).   

First modern metal cable-stayed bridge was the Strömsund Bridge in Sweden, designed by 

Dischinger in 1955. The bridge consists of three spans and has total length of 322 m and 

central span of 182,6 m. Deck is made of concrete and steel (composite deck) and the deck is 

supported by four pairs of inclined cables, one at each side of towers. 

 

Figure 2.3 - Strömsund Bridge (de.wikipedia.org, 2015) 

 

In following years, several innovation in constructing cable-stayed bridges were introduced in 

Germany across river Rhine. The Theodor Heuss Bridge was built in 1957. With a main span 

of 260 m, the bridge introduced harp-shaped cable system with parallel stays and free-

standing pylon. Pylons with height of 40 m above the deck were made of reinforcement 

concrete and from that level were made with cantilever method. Next was the Severins 

Bridge, open for traffic in 1959, was the first application of A-shaped pylon combined with 

transversally inclined cable planes. Also this bridge was first one constructed as an 

asymmetrical two span bridge with one pylon positioned on one side of river banks. Next 

innovation was the Norderelbe Bridge in Hamburg which was first cable-stayed bridge with a 

central cable plan. Pylons and the stay cables were positioned in centre of motorway.  



Discrete optimum design of cable-stayed bridges  Literature review 
    

Andrea Đerek 8 

 

The Mannheim-Ludwigshafen Bride across the Rhine built in 1972 was the first bridge with 

parallel-wire stands. Also this bridge introduces a new design concept. Main span, deck was 

made of steel, while the side spans were made of concrete. 

The beginning of modern cable-stayed bridges was to a large extent dominated by steel 

bridges with orthotropic decks together with plate or box girders and cellular pylons. One of 

the innovations was given by Italian bridge designer Morandi who designed cable-stayed 

bridge with prestressed reinforcement concrete. His most significant work is bridge of Lake 

Maracaibo in Venezuela completed in 1962. Design of bridge is unique because bridge 

contains 5 main spans, each 235 m, with total length of 8678 m. each span is supported with 

92 m tall tower and provides 46 m of clearance to the water below. It was first built multi-

span cable stayed-bridge. 

 
 

Figure 2.4 - bridge of Lake Maracaibo (Wikipedia, 2015) 

 

One of examples superiority of cable-stayed bridges is bridge Tjörn Bridge. After ship 

collisions with pylon, original arch bridge was replaced with cable-stayed bridge. New bridge 

has main span of 366 m, which was 86 m longer than previous one. This bridge also belongs 

to the group of bridges which were built of different structural materials in the side and main 

spans. The side spans are built like continuous concrete girders with intermediate support at 

each cable anchored point and the main span is made like steel box with orthotropic deck. 

Alex Fraser Bridge is example of advantages of using composite girder for long span cable-

stayed bridges. Because of light steel girder, it was possible to use cantilever method for built 

this bridge. The cable stays were added before heavy concrete deck was made. The concrete 

deck is used to transfer compression which is introduced in girder by the horizontal 

component of stay force. 

 



Discrete optimum design of cable-stayed bridges  Literature review 
    

Andrea Đerek 9 

 

In 1983, it was finished brige Barrios de Luna in Spain, designed by engineer Carlos 

Fernández Casado. With 440 m of central span it was world record with major central span at 

that time. Few years later, in 1986, the new record was accomplished with construction of the 

bridge Annacais in Vancouver (Canada) with central span of 465 m and composite deck with 

height of 2.215 m. 

1990s has been years of remarkable progress of cable-stayed bridges where have been 

exceeded the barrier of 500 m of main span with Skarnsund Bridge and later also with 

Yangpu Bridge (Virlogeux, 1999).  The Skarnsund Bridge, with 530 m of main span, is still 

bridge with biggest main span whose deck is made of concrete. 

With construction of the Normandy Bridge (France, 1995 with 856 m of main span) and 

Tatara (Japan, 1998 with 890m of main span) the cable-stayed bridges entered in field of large 

span bridges. 

 

Figure 2.5 – Tatara Bridge (http://www.ihi.co.jp/iis/english/products/bridge_cab.html, 2015) 

 

 

 

http://www.ihi.co.jp/iis/english/products/bridge_cab.html
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In twenty-first century, with construction of the Stonecutters Bridge (Hong Kong, 2009 with 

main span of 1018 m) and Sutong (Shanghai, 2008 with main span of 1088 m) the previous 

world record were broken. 

 

Figure 2.6 – Sutong Bridge (Wikipedia, 2015) 

 

 

At present, Russky Bridge (Russia, 2012) is world largest cable-stayed bridge, with total 

length of 3100 m and main span with 1104 m. Pylons are inverted like A-shaped, with height 

of 320 m, constructed using custom self-climbing form. The span structure has an 

aerodynamic cross-section which has been determined based on aerodynamic design and 

optimized according to the results of experimental processing of scale model. Welded field 

connections are used for longitudinal and transversal joints of the cap sheet of the orthotropic 

plate and lower ribbed plate. For joints of vertical walls of the blocks, longitudinal ribs, 

transversal beams and diaphragms, field connections are used provided by means of high-

strength bolts. The cable stayed system assumes all static and dynamic loads on the bridge 

deck. Cable stays are provided with maximum possible protection not only against natural 

disasters, but also against other adverse effects. The so-called “compact” PSS system has been 

implemented in the cable-stayed bridge deck; this advanced system differs by denser strands 
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allocation in the sheath. Design of cable stays, which employs sheaths and small diameter, 

reduced effect of wind load for 25-30%. Moreover, the cost of materials for pylons, the 

stiffening girder and foundations decreases by 35-40%. PSS cable stays consist of parallel 

strands of 15.7 mm diameter; every strand consists of 7 galvanized wires. Cable stays 

incorporate from 13 to 85 strands. 

 

Figure 2.7 – Russky Bridge (http://rusbridge.net/, 2015) 

 

In the last twenty years, cable-stayed bridges have developed to become dominating in bridge 

constructions with the span range from 200 m to 500 m. Under specific conditions, the cable-

stayed bridges may even be a competition to suspension bridges up to spans more than 1000 

m. Table 2-1 also shows that the girder in the main span is dominantly fabricated by steel and, 

up to a span of 600 m, also by composite sections.   

 

 

 

http://rusbridge.net/
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Name 
Longest span 

(m) 
Pylons Completed Country 

Russky Bridge 1104 2 2012 Russia 

Sutong Bridge 1088 2 2008 China 

Stonecutters 

Bridge 
1018 2 2009 Hong Kong 

E`dong Bridge 926 2 2010 China 

Tatara Bridge 890 2 1999 Japan 

Pont de Normandie 856 2 1995 France 

Jiujiang Fuyin 

Expressway Bridge 
818 2 2013 China 

Jingyue Bridge 816 2 2010 China 

Incheon Bridge 800 2 2009 South Korea 

Xiamen 

Zhangzhou Bridge 
780 2 2013 China 

 

Table 2-1 shows the 10 longest cable-stayed bridges 

 

2.3. Structural conception 

Cable-stayed bridges are multiple statically undetermined structures. Behaviour of these 

structures is related with the stiffness of their main parts (deck, pylons, and cable-stays). 

Thus, in this part will be present most relevant aspect of these structures. 

2.3.1. Longitudinal conception 

Cable-stayed bridges are structures made of deck which is supported by inclined cables on 

one or more pylons. In this structures deck is behaved like continuous beam elastically 

supported in points where cables are anchored. Transmission of the forces is conducted 

according to following pattern: Deck transmits load to the pylon trough cables which are 

always in tension and pylons transmits that load to the foundations under mainly axial action. 

 

Figure 2.8 – Transmission of forces (http://science.howstuffworks.com/engineering/civil/bridge.htm/printable, 

2015) 

http://science.howstuffworks.com/engineering/civil/bridge.htm/printable
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As was mentioned before, first built cable-stayed bridges had limited number of cable stays. 

According to that we had very small number of cables with large area of cable. That caused 

problems in the way of anchored the cable stays.  

Thus, it was necessary to introduced multiple-suspension system of cable stays which used 

large number of cable stays with small spacing (between 7 to 15 m) and small diameter of 

stays. That system ensured continuous support of the deck. Bending moment of deck depends 

on gap between cable stays, use of small gap results in lower bending moment which allowed 

using stays with smaller diameter. In this case, the forces transmitted by cable stays are lower 

so it is possible to use smaller anchors and cables with smaller diameter. In the multiple-

suspension solution can be used more slender cable stays, therefore lighter, easier to build and 

allowing the execution of larger spans. This solution has the further advantageous economic 

point of view because the bridge cable stays, as is disclosed in (Walther et al, 1999), increase 

the cost per m
2
 of the board due to the gap is smaller than in any other type of bridge. This 

solution is adopted for cable-stayed bridges with small to medium spans. However, for 

bridges with medium to long spans it has been adopted one special system. That is system 

with two pylons and three spans. One main span and two side spans. Bridges with these kinds 

of spans are built entirely in steel, prestressed concrete and mixed of steel and concrete. To 

ensure that stress variation between main and side span is less than allowed stress it is usual to 

set that length of side spans is 40 % and 45 % of length of main span (Leonhardt, 1987). 

For bridges with medium to large span exist few ways to design longitudinal concept. First 

one is using transition pillars in the side spans. The use of two or three intermediate side 

pillars will allow attenuating these stress variations. Example for this solution is presented on 

Figure 2.9. 

 

Figure 2.9 – Vasco da Gama Bridge (http://www.thelisbonconnection.com/, 2015) 

 

http://www.thelisbonconnection.com/
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Second variant, unusual, is characterized by the adoption of very short side bays, with a 

length between 20% and 30% of the length of the central span. The ends of the deck are fixed, 

so it is necessary to adopt an expansion joint mid-span of the bridge to accommodate the axial 

deformation and rotations due to temperature variations and delayed effects of concrete. 

Example for this solution is presented on Figure 2.10. 

 

Figure 2.10 – Barrios De Luna Bridge 

(http://www.arqueologiaypatrimonioindustrial.com/2007_07_01_archive.html, 2015) 

 

 

Another structural design adopted in the longitudinal arrangement of cable-stayed bridges is 

characterized by having only a tower. This solution is more widely used in small and medium 

span bridges. In this solution there is one main span offset of side span with intermediate 

pillars in which cables are anchored or a main span rigid with retaining cables attached to 

outer anchor block. Example for this solution is presented on Figure 2.11. 

 

Figure 2.11 – Bridge Rainha Santa Isabel (Wikipedia, 2015) 

http://www.arqueologiaypatrimonioindustrial.com/2007_07_01_archive.html
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The multi-span cable-stayed bridges can be considered as a third type of longitudinal 

configuration. Example for this solution is presented on Figure 2.12. 

 
 

Figure 2.12- Viaduct de Millau (http://circuitosvip.blogspot.pt/2015/01/viaduto-de-millau-franca.html, 2015) 

 

 

2.3.2. Anchoring system 

Choice of anchoring system of cable-stayed bridges is one of most important steps in design 

of brides. Anchoring system has great impact, not only on behaviour of structure, also on 

constructive process and cost of bridge because 20 % to 30 % of the total cost represents cost 

of anchoring system. 

Arrangement of cable stays in longitudinal direction can be carried out like fan system, harp 

system or semi-harp system. 

 

Figure 2.13 - Arrangement of cable stays in longitudinal direction (http://www.fgg.uni-lj.si/, 2015) 

http://circuitosvip.blogspot.pt/2015/01/viaduto-de-millau-franca.html
http://www.fgg.uni-lj.si/
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First built bridges with small to medium spans were built with fan system of anchoring of 

cable stays. Advantages of this system is that as greater angle of cable stay with horizontal 

plane is formed, lower installation force is needed and in principal, low total amount of 

cables. However, disadvantage of this system is that all cables have to anchor at the top of 

pylon which present construction problem and also pylon is loaded only on his top. In terms 

of service, there is possibility of imbalance of force transmitted by cable stays which lead to 

high bending moments at the base of bridge. Thus, although fan configuration is generally 

regarded as the most economical in terms of the amount of steel stays (Podoly and Scalzi, 

1986; Troitsky, 1988) have not been frequently used in large cable-stayed bridges. 

Furthermore, this solution is generally considered less attractive from an aesthetic point of 

view due to the optical effect of crossing rods, depending on this aspect, however, the 

observer location (Walther et al, 1999). 

Harp system of anchoring is characterized that all cable stays are parallel to each other. 

Advantages of this system are that the pylon has additional support along the whole height. 

Disadvantage of this system is that at lower height of pylon it is not economical solution 

because it require greater number of cable stays. However, this system represents aesthetically 

most recognized solution because it gives great regularity of structure. By observing the 

bridge cables obliquely intersect always at a constant angle (Walther et al, 1999). 

With evolution of cable-stayed bridges and multiple-suspension systems it was required to 

developed system of anchoring which combine advantages of both systems. This system is 

characterized that cable stays are anchored to the certain point of pylon height. Thus, it 

allowed construction of cables relatively simple than in fan system and angle inclination is 

higher than in hap system. This arrangement of the cable stays has been progressively adopted 

in the construction of modern cable-stayed bridges because it establishes a balanced structural 

balance between operational requirements, economic and aesthetic. 

In horizontal direction it is established anchoring in one or two planes, rare in three planes. 

The choice of number of anchoring planes depends of cross-section of deck and geometry 

requirements of pylons. Aesthetically better solution is to choose one plane anchoring system 

because during observing the bridge will never be crossing of cables. Furthermore, this 

solution required great torsional stiffness of deck cross-section because cables generated only 

vertical loads in this plane. This system can be used for box or multi-cell box cross-section of 

deck or if deck is monolithically connected with pylon. 
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Lateral suspension can be classified as partial or total. In partial suspension system deck is 

suspended by cable stay and also suspended in pylon. In case of total suspension, deck is 

suspended just with cable stays and that solution has several advantages from a structural 

point of view. The support made by partial suspension system is more rigid than one made by 

total suspension system therefore with total suspension system the values of negative bending 

moments of deck are much less than one in partial suspension system. Also from seismic 

point of view, with total suspension system structure act like pendulum suspended on cables 

with no significant efforts on displacement of pylons and foundations. Disadvantage of this 

system is high displacements of deck which are not important for road bridges but can be 

significant in rail bridges under acting of starting and breaking forces of composition of train. 

2.3.3. Geometry of pylons 

In principle the pylon is a tower structure where the most decisive load will be the axial force 

originating from the vertical components of the forces in the cables attached to the pylon. 

Nowadays, pylons are mostly built of concrete because the concrete towers are cheaper than 

steel once and also gives more freedom in shaping. Their height has great impact on amount 

of steel used for cable stays and level of compressive axial force in deck. Also height of the 

pylon above the tray is normally between 20% and 25% of the length of the central span, 

where two pylons are used, and when is just one pylon used the height of pylon is about 40% 

to 50% of the main span. (Leonhardt, 1987; Hewson 2003). Pylons can be shaped like A, H, 

X, inverted V, Y or combination of these.  

The definition of the geometry of the pylons depends on anchoring systems (fan, harp or 

semi-harp) and suspension (lateral or central, partial or total) adopted. It is still necessary to 

also take into account the longitudinal configuration (bridge with three spans and two pylons; 

asymmetrical bridge with only one pylon and a main span, bridge multiple spans) and 

guarantee the space for anchoring and tensioning cable stays inside the pylon. In addition to 

these aspects, and because of the huge influence of the geometry of the pylons on the 

aesthetics of a bridge cable stays, usually the final configuration of the pylons is built on 

aesthetic considerations. 

2.3.4. Geometry and materials of deck 

The choice of deck cross-section has great impact on design of bridge. Choice of material will 

influenced on self-weight of deck, which will has impact on structural design of other parts of 

bridge. Shape of cross-section of deck depends also on aerodynamic behaviour of elements. 
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The structural purpose of the deck / stiffening girder is to carry longitudinal and transverse 

bending moments, bring stiffness to the bridge and distribute point loads to cables.  

First modern cable-stayed bridges, had a reduced number of cable stays and limited distance 

between them, thus it was necessary to have relatively stiff deck made mostly of steel. 

Evolution in design of cable-stayed bridges brings greater number of cable stays and thus 

distance between them was not limited, which allowed using of thinner decks made of 

different materials. Bridge deck can be made of steel, reinforced concrete, prestressed 

concrete or can be made as composite deck (combination of steel and concrete). The self-

weight of deck have direct influence on required capacity of pylon and cable stays. According 

to Walther et al. (1999) self-weight of decks are: 

- Steel deck 2.5-3.5 kN/m
2
 

- Composite deck 6.5-8.5 kN/m
2
 

- Concrete deck 20 -25 kN/m
2
 

The weight of deck has influence, not just on number of cable stays and distance between 

team, also dictate cross-section of pylons and amount of material which is required for pylons 

and stays. According to that, it is necessary to made cost benefit analysis to choose most 

economical solution. 

Due to stiffness of concrete cross section and relatively small self-weight, the concrete deck is 

the most economical solution for spans to 400 m. For spans from 400 to about 700 m, the 

concrete deck is heavy and only-steel deck is expensive. Therefor the best solution for these 

spans is composite deck. Advantages of composite deck are reduction of the concrete self-

weight and greater strength than in steel deck. At spans beyond 700 m only economical 

solution is steel girder with orthotropic deck.  

The longitudinal bending moment depends also on weight of deck and distance between cable 

stays, so parameter of distance between cable stays is related to material of which deck is 

made. Thus, for concrete deck, distance between cable stays is from 6-9 m. for composite 

deck that parameter is from 9-16 m. for steel deck it can be used from 15-20 m. 

Type of cross-section of deck in cable-stayed bridges depends on chosen suspended system 

(lateral or central). The central suspension required cell box cross-section. For the lateral 

suspension system can be used cross-section from beam-and-slab cross-section till multi-cell 

box cross-section. 
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In this part will be present some of solutions adopted for cross-section of deck of the cable-

stayed brides. The cell box cross-sections have not been used as optimal cross-section for 

bridges with central suspension system but also for the bridges with lateral suspension system. 

Case of central suspension system is Brotonne Bridge, whose cross-section of deck is 

presented on Figure 2.14. For the main span of 320 m it was used single-cell box cross-

section made of prestressed reinforcement concrete. Dimensions of cross-section are 19.20 m 

wide and 3.80 high with inclined anchors, which help in transmission of forces. 

 

Figure 2.14 – Scheme of deck cross-section of the Brotonne Bridge (Walther et al, 1999) 

 

In Pasco-Kennewick Bridge, with lateral suspension system, the deck has two web, trapezial 

box girder cross-section, trussed on the inside to refer the stay anchorage loads located in the 

centre of the upper slab to the bottom box girder angles. In the construction of this bridge are 

used all prefabricated elements to accelerate process of construction and eliminate effects of 

creep and shrinkage of concrete. 

 

Figure 2.15 – Scheme of deck cross-section of Pasco-Kennewick Bridge (Walther et al, 1999) 
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On the bridge Barrios Luna, which also has lateral suspension system, was used tri-cell box 

cross-section. Dimension of cross-section are 22.5 m wide and 2.5 m high for main span of 

440 m. Scheme of deck cross-section is presented on Figure 2.16. 

 

Figure 2.16 – Scheme of deck cross-section of Barrios Luna Bridge (Walther et al, 1999) 

 

In the Skarnsund Bridge, which present todays biggest main span made of concrete, also was 

used cell box cross section with lateral suspension system.in this bridge was used triangular 

bi-cell box cross section with maximum height of 2.15 m with main span of 530 m. 

 

Figure 2.17 – Scheme of deck cross section of Skarnsund Bridge (Walther et al, 1999) 
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Except cell box cross-section in concrete cable-stayed bridges it is common to use slab cross-

sections. This solution allows light and thin design solutions, combining this way economical 

and aesthetical part. In Figure 2.18 is presented, as an example, scheme of deck cross-section 

of Vasco da Gama Bridge in Lisbon. This deck is 30.90 m wide and it is made of one concrete 

slab with 0.25 m thickness which is supported on two longitudinal prestressed reinforcement 

concrete beams with 2.6 m high and 1.7 m wide and transversal beam spaced every 4.425 m. 

to reduce the weight of deck transversal beam was made of steel. Main span of this bridge is 

420 m. Scheme of deck cross-section of Vasco da Gama is presented on Figure 2.18. 

 

Figure 2.18 – Scheme of deck cross-section of Vasco da Gama Bridge (Hewson, 2003) 

 

Taking full advantages of multiple suspension system it is possible to design solution with 

even more slender deck including into cross-section slender slab. As an example may be 

mentioned the solution adopted for the bridge deck of Diepoldsau Bridge in Switzerland, 

which is completed in 1985. This bridge has main span of 97 m and 14.5 m wide deck with 

slab of 0.45 m thickness. The deck is suspended by cable stays every 6 m. 

 
Figure 2.19 - Scheme of the cross section of the deck of Diepoldsau Bridge (Walther et al, 1999) 
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2.4. Modelling of concrete structures 

In this study, the time-dependent effects of creep, shrinkage and aging of concrete are 

evaluated according with Eurocode 2 formulations. The creep model is based on linear 

viscoelasticity and takes into account ageing effects. Shrinkage strains are time-dependent but 

stress independent.  

Concrete strength and modulus of elasticity increase with time as result of curing. At an early 

age, the strength and modulus of elasticity increase quickly and the increase then gradually 

stagnates but does not stop completely. According to Eurocode 2 the concrete modulus of 

elasticity at an age, t, in days is given by 
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where Ecm is the mean modulus of elasticity of concrete at an age of 28 days, t is the age of 

the concrete in days and s is a coefficient depending on the cement type. 

The total strain at time t of a concrete specimen, uniaxially loaded with a stress σc at time t0, 

can be written as the sum of the stress dependent,  0, ttc , and stress independent,  tcn , 

strains: 

            ttttJtttt cnccncc    000 ,,  (2)  

where  0, ttJ  is the creep function and if the stresses are less than 45% of the characteristic 

value of concrete compressive strength (fck), the principle of superposition is valid and the 

creep strain varies linearly with the applied stress.  

In a cable-stayed bridge the stresses continually change during both the construction phase 

and the service life of the structure. Under variable stresses and using the principle of 

superposition, Equation 2 can be rewritten as: 
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Several approaches have been proposed to solve this equation, simplified methods, 

step-by-step numerical integration and approximation of the creep function. In this paper the 

creep function is approximated by a Dirichlet series leading to: 
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where n is the number of terms of the Dirichlet series and the coefficients aj are obtained from 

a curve fitting using the least squares method. The coefficients 
j/1  are called retardation 

times and are chosen to cover the range of time values for the creep coefficients calculation. 

According to Eurocode 2, the total shrinkage strain at an age t,  tcs , is the sum of the 

autogeneous ( ca ) and the drying shrinkage ( cd ). The drying shrinkage at an age t is defined 

as 

     0,, cdhsdscd kttt    (5)  

where  sds tt, and kh are coefficients depending on the member notional size and the age of 

concrete at the beginning of the drying shrinkage.  tcd  is a parameter that depends upon the 

environmental relative humidity, the cement type and the concrete compressive strength. 

The autogeneous shrinkage develops due to chemical reactions during hardening in the early 

age of concrete and it can be expressed at an age t by 

       caasca tt   (6)  

where  ca  is the long-term value of the autogeneous shrinkage strain and  tas  is a 

function that gives the evolution of the autogeneous shrinkage with time. 

In the structural analysis the time-dependent effects were simulated by equivalent nodal 

forces that produce the same displacement field as the time-dependent effects and from which 

is calculated the actual deformation state. These forces are calculated, for each time interval, 

as initial deformations using the finite element formulation and the corresponding values of 

the creep and shrinkage strains computed according to the formulation previously presented. 

The stresses are then computed using only the elastic constitutive relationship between 

stresses and mechanical origin deformations. 
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2.5. Geometrical nonlinear effects 

There are three main sources of geometrical nonlinearity in cable-stayed bridges: the 

nonlinear axial force-elongation relationship for the inclined cable stays due to the sag caused 

by their own weight; the nonlinear axial force and bending moment-deformation relationships 

for the towers and the deck under combined bending and axial forces; and the geometry 

change caused by large displacements. 

The geometrical nonlinear effects were considered by means of a second-order elastic 

analysis. The cable stays were modelled as truss elements with stiffness matrix computed 

using the equivalent modulus of elasticity, i.e., Ernst formula which can describe the catenary 

action of a cable. The value of the cable equivalent modulus of elasticity is given by 
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where Eeq is the equivalent cable modulus of elasticity, E is the effective cable material 

modulus of elasticity, γ is the specific weight of the cable material, L is the length of the 

chord, α is the angle between the cable chord and the horizontal direction and σ is the tension 

stress in the cable. 

2.6. Construction methods 

Cable-stayed bridges can be built using different erection techniques. The choice of 

construction method depends on several factors such as the dimension of the structure, 

condition of the site and cost of possible method. The construction methods that can be used 

are: 

- Construction on temporary supports 

- Construction by rotation 

- Construction by incremental launching 

- Construction by cantilever method 
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Construction methods which are used in building of cable-stayed bridges of small to medium 

span are mostly construction on temporary supports, construction by rotation and construction 

by incremental launching. (Cross, 1997; Grabow, 2004; Mueller-Haagen, 2005; Peter, 2007). 

Characteristic of all methods, except cantilever method, is that cable stays are installed in one 

operation. Thus, with these methods it is possible to reduce number of construction stages, 

number of workers included in construction process. In next paragraphs are described each 

method. 

2.6.1. Construction on temporary supports 

In the relatively simple first construction method, the entire bridge girder is erected on 

temporary supports or on scaffoldings that can be adjusted in order to achieve the correct 

position. Thereafter, the mounting cable forces are precisely evaluated to balance the vertical 

deck reactions on the temporary supports, leading to the pretended geometry and stress 

distribution. The advantage of this erection procedure is that the deck geometry and the cable 

tension forces can be controlled easily. However, the use of temporary supports fails when 

clearance of the main span is required during construction and is not economical when the 

main span of the bridge crosses deep water. 

 

Figure 2.20 – Construction on temporary supports (John Wiley & Sons, 1994) 

 

2.6.2. Construction by rotation 

The construction of cable stayed bridges by rotation is the preferred method when building 

over a waterway, for example a river. The bridge deck is erected on temporary supports at the 

shore parallel to the bank and after the tensioning of the stay cables it is rotated around its 

pylon. 
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2.6.3. Construction by incremental launching 

When erecting a cable stayed bridge by the incremental launching method, the 

superstructureis cast-in-situ at a stationary location behind one of the abutments and is then 

jacked horizontally into place. The procedure has the advantage that, in contrast to the first 

two methods, it does not require false work to cast the girder. As in the previous methods, the 

cable stays can be tensioned in one operation after the construction of the deck. However, and 

like them, it is generally limited to the construction of small and medium span bridges. 

2.6.4. Construction by cantilever method 

The cantilevering method is a construction method where segments, either precast or cast-in 

place, are assembled and stressed together subsequently to form the self-supporting 

superstructure. Depending on the specific segment configuration and erection sequence 

chosen for the cantilevering method, the cantilever may never be exactly balanced so that the 

superstructure needs to be balanced to ensure stability. It is possible to fix the supports at the 

piers of cantilevering superstructures and install vertical prestressing tendons. Furthermore, it 

is very common to make use of an additional temporary pier with vertical prestressing that is 

located close to the permanent one. This pier helps withstanding overturning moments from 

unbalanced load cases on the bridge superstructure. Additionally, the lateral bending stiffness 

of the girder must be sufficient, to ensure the stability of the cantilever arm during erection. 

 

Figure 2.21 – Construction by cantilever method (John Wiley & Sons, 1994) 
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2.7. Optimization of cable-stayed bridges 

Cable-stayed bridge design is an iterative procedure dealing with the definition of overall 

geometry, the calculation of cable forces` distribution and finding of the members` cross-

sections to satisfy displacement and stress criteria from erection to the completion of 

construction. This is laborious task due to the high redundancy, the large amount of design 

variables and design objectives that must be dealt with. Optimization techniques are not 

commonly used in civil engineering practice. However, in the design of large and complex 

structures like cable-stayed bridges, the use of optimization techniques naturally arises as an 

efficient way to deal with the large amount of information in view of reduction of material 

cost and thus obtaining economical and structurally efficient solution. 

Application of optimization algorithms in bridge design was made in two large areas. First 

one is determination of prestressing force which is adjusted to cable stays and second area is 

determination of geometrical and sectional variables in view of optimal design. In this case, 

the optimum values of design variables (cross-section dimensions, adjustment cable stay 

forces, geometric variables) are determined from minimization of certain objective function. 

These objective functions are formulated due to structural criteria of efficiency and/ or 

economy to minimize total cost of structure. The objective functions are subjected to 

constrain of limited displacement and allowable stresses of structural elements and materials. 

2.7.1. Optimization of cable force 

The determination of the prestressing forces to apply the risers can also be accomplished 

through the use of optimization algorithms. Several authors have developed work on this 

theme. Refer below some of these works. 

The previous research works concerning the use of optimization algorithms in the design of 

cable-stayed bridges dealt mainly with the problem of cable tensioning in steel bridges 

(Chen1992; Negrão and Simões 1997a; Sung et al. 2006; Baldomir et al. 2010). However, the 

optimization of the cable forces on concrete cable-stayed bridges (Furukawa et al. 1987a; 

Furukawa et al. 1987b; Kasuga et al. 1995; Janjic et al. 2003) was also reported. 

Furukawa et al. 1987a presented a paper referring to cable-stayed bridges of prestressed 

concrete, and that these tensions have two adjustment systems interacting with each other, 

respectively pre-efforts on the deck and on the cable stays. In this paper the authors formulate 

and solve the problem of determining prestressing forces on the cable stays taking into 

account the effects of prestressing and creep on deck elements. The problem of determining 
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the forces on the cable stays is solved by minimizing the elastic deformation energy of the 

deck and pylon. 

The same author and others (Furukawa et al, 1987b) gave further state of the problem of 

optimization of cable-stayed bridges. In this work optimization problem is characterised as 

multi-objective problem which have to consider, as design variables, not only the forces of 

prestressing on the cable stays but also the dimensions cross sections elements. Considering 

complexity of problem, they suggested to solve it in two phases, determining sections through 

minimization of a cost criterion, and determining the forces on the cable stays through 

mechanical criteria such as the minimization of the strain energy. However, this approach 

loses the interaction between the two types of variables in achieving the optimum solution. 

Osuo et al (1987) proposed a method for determining the optimization of the adjustment cable 

stay forces of bridges in the particular case where matrix of influence coefficients of the 

forces on the cable stay is singular. 

Qin (1992) developed a method for determining the optimum planning process of stretching 

cable stays. Establishing the final configuration desired, based on pre-defined plan and 

stretching by using the concept of influence pattern, similar to the matrix of influence by other 

authors used but in view of the construction steps, it is possible to write the final state of 

structure and overlap effects of the successive stretching steps. The optimization problem is 

formulated as a linear programming problem can be solved by the Simplex method. 

Within the framework of his doctoral thesis (Negrão, 1996) regarding the analysis, sensitivity 

analysis and optimization of metallic cable-stayed bridges, the author has also undertaken to 

solve the problem of determining the prestressing forces on the cable stays (Negrao and 

Simões , 1997). The determination of the forces on the cable stays was formulated as a multi-

objective optimization problem where the solution is obtained by minimizing a convex scalar 

function obtained based on the Maximum Entropy Principle. In the formulation of the 

problem were considered design variables associated with prestress on the cable stays and 

cross-sectional geometry and design variables in order to minimize the cost of the structure 

and observing the permissible stresses in the material and limit the displacement. The 

construction phases and the effect of catenary cable stays were taken into account in the 

structural analysis and sensitivity analysis was performed using the direct method with 

analytic derivatives. In this paper the authors also solved the problem of correcting deviations 

in shifts during construction by adjusting the forces on the cable stay by a similar formulation 
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to the previously mentioned but only with use of decision variables associated with 

prestressing. 

Lee et al (2008) presented a paper proposing improvements to the "unit force method" (Janjic 

et al, 2003) in order to solve specific problems of the determination of the forces on the risers 

in Wando Bridge, a bridge asymmetric straps built in South Korea . Thus, in addition to the 

iterative cycle used to determine the forces on the risers considering restrictions on the deck 

and pylon displacement, proposed to add a new iterative cycle in order to check the upper and 

lower limits imposed forces on certain cables. With the proposed methodology has improved 

the distribution of forces on the cable stays and bending moments on the deck, making them 

more uniform. 

More recently, Hassan et al (2012) and Hassan (2013) presented a methodology for 

determining the strength of prestressing of the tie cable stays and their cross sections 

considering a cable-stayed bridge in its final configuration and subject to permanent loads. 

This methodology was based on the observation that the distribution of the prestressing forces 

on the cable stays along the deck follows an arbitrary polynomial function. Thus, the authors 

used "B-spline" functions to model the distribution of forces in the straps along the deck. 

Genetic algorithms were used to obtain the optimal solution regarding the distribution of 

forces in the struts that minimize the vertical and horizontal displacements of the deck and on 

top of the pylon. Thus, it was possible also to minimize the distribution of bending moments 

on the deck and pylon. 

2.7.2. Optimization of sectional and geometrical variables 

The optimization algorithms also can be used in order to minimize the cost of cable-stayed 

bridges. Use of them in a process of minimization was studied by several authors. In this 

process it can be considered optimization of segmental parts of bridge or optimization of 

geometrical dimensions of main elements of cable-stayed bridges. 

Bhatti et al (1985) have formulated and solved the problem of optimal design of a metallic 

cable-stayed bridge. He considered only sectional variables and objective function set as the 

weight of the bridge structure, imposing restrictions on the movements and stresses, taking 

into account the allowable stresses of the materials and the risk of instability due to buckling. 

The solution was obtained by minimizing the objective function using a quadratic 

programming algorithm. 



Discrete optimum design of cable-stayed bridges  Literature review 
    

Andrea Đerek 30 

 

Ohkubo and Taniwaki (1991) presented an optimization method to minimize the cost of steel 

cable-stayed bridges considering specified variables connected with the dimensions of the 

cross sections of the geometric elements and variables corresponding to the position of the 

anchors of the cable stays and lifters in the pylons. They were considered restrictions tensions 

in the elements to ensure the allowable stresses in the materials. Given the results, the authors 

pointed out the importance of considering both types of specified variables for a more 

economical solution. 

Negrao (1996) in his doctoral thesis studied the analysis, sensitivity analysis and optimization 

of metallic cable-stayed bridges. In addition to the work already referred to in 2.5.1 on 

determining the forces of prestressing the tie cable stays were also considered sectional and 

geometric specified variables and have appealed the two-dimensional modeling (Simões and 

Negrao, 1994) and three-dimensional structure (and Negrao Simões, 1997). It was named 

materially linear behaviour of the structure steel but was taken into account effect Catenary 

risers through modelling of the tie cable stays with connecting cable members with equivalent 

elastic modulus. The influence of the construction phases was also taken into account in the 

analysis, through a chronological discretization of the structure made with a physical 

separation of the corresponding substructures the various stages of the construction process. 

As mentioned before for the determination of the forces on the cables, the optimization was 

formulated as a multi-objective problem in which the solution has been obtained by 

minimizing a convex scalar function obtained based on the Maximum Entropy Principle. 

They consider themselves as objectives cost structure, tensions in the elements and the 

displacements of the nodes of the structure. Studies were carried out considering the dynamic 

action of earthquakes (Simões and Negrao, 1999) and cell box criss-section (Negrao and 

Simões, 2000). 

Battle et al (2009) presented a paper on the minimization of the cost of a cable-stayed bridge. 

And geometric sectional variables and constraints have been considered in the vertical 

displacement of the deck and horizontal displacement on top of the pylon and also stresses, 

taking into account the allowable stress and the buckling instability. The solution was 

obtained through an optimization problem solved with a joint approach based on genetic 

algorithms and "support vector machine" (SVM). The use of SVM possible to reduce the time 

required for convergence of the solution using genetic algorithms. These solutions were 

further examined to verify its validity. 
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Baldomir et al (2010) presented a methodology, by applying an optimization algorithm to 

minimize the amount of prestressing steel cables in a metal cable-stayed bridge. The proposed 

methodology involves use of both programs ABAQUS and MATLAB and is designed like: 

first program for structural analysis and the second for optimization. Considering the structure 

subject to permanent loads, prestressing forces are determined so as to ensure that vertical 

displacement in the deck is zero and also horizontal displacements at the top of the pylon are 

zero. The objective function which was minimized is the total volume of steel cables, subject 

to restrictions in tensions on the risers in vertical movements in their anchor points on the 

deck and horizontal displacements at the top of the pylon. The solution was obtained by an 

algorithm that minimizes function of several variables subject to inequality constraints using a 

sequence of quadratic programs. 

Recently, Ferreira and Simões (2011) developed a work on the optimization of the dynamic 

behaviour of a metallic cable-stayed bridge using a control strategy to locate the seismic 

action. The dynamic analysis used an analytical solution and took into account the spatial 

variability of the seismic action, the location of the sensors and the delay the actuators. In the 

optimization algorithm were considered as design variables, geometric parameters of the 

structure (height of pylons and position of the anchors of the cable stays on the deck and 

pylons), dimensions of the cross sections (the cable stays, the deck and the pylons) and the 

algorithm of control. The integrated optimization strategy of structure and control devices 

allowed minimizes the cost and improves the dynamic properties of the structure and waste of 

energy. Following the previous work, the same authors (Ferreira and Simões, 2012) 

developed an integrated approach to the design of the structure and control devices, with a 

view to minimizing the cost of pedestrian cable-stayed bridges, equipped with passive and 

active monitoring devices. The optimization problem was formulated as multi-objective 

optimization problem which have to minimize the cost, stresses, the accelerations and 

displacements. The Pareto solution was obtained by minimizing a convex scalar function 

obtained based on the Maximum Entropy Principle. They were obtained efficient optimal 

solutions with either passive devices or active, with different geometries, weight distributions 

and cost. The results showed that the use of an integrated approach enables to take better 

advantage of the control devices, thereby reducing the weight and cost of the structure and 

improving control efficiency. 
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2.7.3. Liner programming 

Mathematical programming is concerned with the extremization of an objective function  

defined over an n-dimensional design space
 
and bounded by a set of constrains in the design 

space. The set of constrains may be defined by equality or inequality constraints and these 

constraints may assume linear or nonlinear forms. The function f is called a mathematical 

program or a mathematical programming problem. 

The term linear programming (LP) describes a particular class of extremization problems in 

which the objective function and the constraint relations are linear functions of the design 

variables. Because the necessary conditions for an interior minimum is the vanishing of the 

first derivative of the function with respect to the design variables, linear programming 

problem have a special feature. That is, the derivatives of the objective function with respect 

to the variables are constants which are not necessarily zeroes. This implies that the extremum 

of the linear programming problem cannot be located in the interior of the feasible design 

space and, therefore, must lie on the boundary of the design space described by the constraint 

relation.  

Linear programs are problems that can be expressed in canonical form: 

 

maximize  c

subject to   Ax b

and             x 0

T x





 (8)  

 

 

where x represents the vector of variables (to be determined), c and b are vectors of (known) 

coefficients, A is a (known) matrix of coefficients, and  is the matrix transpose. The 

expression to be maximized or minimized is called the objective function (c
T
x in this case). 

The inequalities Ax ≤ b and x ≥ 0 are the constraints which specify a convex polytope over 

which the objective function is to be optimized. In this context, two vectors 

are comparable when they have the same dimensions. If every entry in the first is less-than or 

equal-to the corresponding entry in the second then we can say the first vector is less-than or 

equal-to the second vector. 

 

 

https://en.wikipedia.org/wiki/Canonical_form
https://en.wikipedia.org/wiki/Vector_space
https://en.wikipedia.org/wiki/Matrix_(mathematics)
https://en.wikipedia.org/wiki/Matrix_transpose
https://en.wikipedia.org/wiki/Convex_polytope
https://en.wikipedia.org/wiki/Comparability
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Linear programming can be applied to various fields of study. It is used in business 

and economics, but can also be utilized for some engineering problems. Industries that use 

linear programming models include transportation, energy, telecommunications, and 

manufacturing. It has proved useful in modelling diverse types of problems in planning, 

routing, scheduling, assignment, and design. 

Necessity of solving a system of linear inequalities first shown in 1827, when Fourier 

published a method for solving that kind of problem, later called method of Fourier-Motzkin 

elimination. First linear programming formulation was given by Leonid Kantorovich in 1939. 

His method was used as a plan expenditures and returns so as to reduce costs to the army and 

to increase loses incurred by the enemy. Around same year Koopmans formulated classical 

economic problems as linear programs. In 1941, Hitchook also formulated transportation 

problem as linear programs and gave solution very similar to the later Simplex method. 

Simplex method was invented by George Dantzig in 1947, and for the first time efficiently 

tackled the linear programming problems in lot of cases. The linear programming problem 

was first solve in polynomial time in 1979 by Khachiyan, but large breakthrough in this part 

came in 1984 by Karmarkar who introduced interior-point method for solving linear 

programming problems. 

An optimal solution of linear programming does not need to exist and it can happen it two 

cases. First, if two constrains are inconsistent, than feasible solution does not exist. Second, if 

the polytope is unbounded in the direct of the gradient of objective function, than again 

optimal solution does not exist. Geometrically, the linear constrains define the feasible region, 

which is convex polyhedron. A linear function will has optimal solution if the function is 

convex or concave function. That implies if function is convex every local minimum is also 

global minimum and if function is concave every local maximum is global maximum. 

Otherwise, if a feasible solution exists and if objective function is bounded, than optimal 

solution is always attained on the boundary of optimal set. 
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Today, for solving linear programming problems, we have several different algorithms which 

are divided in two groups: 

- Basis exchange algorithms 

- Interior point 

In a group of basis exchange algorithms most important algorithms are: 

1. Simplex algorithm of Dantzig 

Algorithm was developed in 1947, and solving problems by constructing a feasible solution as 

vertex of the polytope and then walking along of the edges of polytope to vertices with non-

decreasing values of objective function until an optimum solution is reached.  

2. Criss-cross algorithm 

It is an algorithm that pivots between bases. This algorithm does not need to maintain 

feasibility, but can pivot rather from a feasible basis to an infeasible basis. Disadvantage of 

this algorithm is that it does not have polynomial time-complexity for linear programming. 

Second group is group of Interior points and most important algorithms are: 

1. Ellipsoid algorithm 

This algorithm was first worst-case polynomial-time algorithm for solving linear 

programming problems. The convergence analysis has real-number predecessors, notably the 

iterative methods developed by Shor and the approximation algorithms by Nemirovski and 

Yudin. 

2. Projective algorithm 

Importance of this algorithm was that he established polynomial-time solvability of linear 

programming. This algorithm improved ellipsoid algorithm and it was much faster in practical 

LP problems than simplex method. 

3. Path-following algorithms 

In contrast to simplex method interior point methods find optimal solution moving through 

the interior of the feasible region. For theoretical and practical purpose these algorithms were 

used. 
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Chapter 3.  Optimum design formulation 

 

 

3.1. Introduction  

To describe optimization concepts and methods, we need a general mathematical statement 

for the optimum design problem. Such a mathematical model is defined as minimization of a 

cost function while satisfying all the equality and inequality constrains. The inequality 

constraints in the model are always transformed as “≤ types”.   

In this thesis, the optimum design of concrete cable stayed bridge is posed as a multi-

objective optimization problem. This involves the definition of the design variables, the 

design objectives and objective function. In Figure 3.1 it is shown procedure of optimization 

process. 
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                                   Figure 3.1 – Scheme of optimization process 
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3.2.  Design variables 

The notion of optimizing a structure implicitly presupposes some freedom to change the 

structure. The potential for change is typically expressed in terms of ranges of permissible 

changes of a group of parameters. These parameters are usually called design variables. 

Continuous design variables have a range of variation, and can take any value in that range. 

Discrete design variables can take only isolated values, typically from a list of permissible 

values. In most structural design problems we tend to disregard the discrete nature of the 

design variables in the solution of the optimization problem. Once the optimum design is 

obtained, we then adjust the values of the design variables to the nearest available discrete 

value. 

The design variables, which were considered in this paper, were the cable stay area and 

prestressing forces, also the cross sectional dimension of the deck and towers. The design 

variables are represented by xi, and the global design variable vector is 

  1 2 3, , , ,
T

NX x x x x   (9)  

 

The stay cables were made of 0.6” S stands (15.7 mm normal diameter and 1.5 cm
2
 of cross 

sectional area). Rectangular hollow sections were considered for the towers cross sections and 

for the deck was considered single cell box. 

Deck and towers cross sectional design variables have direct impact in weight (or cost) 

reduction. Cable areas and cable forces play an essential role in stress distribution throughout 

the structure, because they define the extent of the beam like behaviour of the deck. 

Moreover, they are fundamental for adjusting bridge geometry and deflection control, which 

otherwise could only be achieved by a sever stiffening of the deck, in opposition to the 

expected reduction of material.  
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3.3. Design objectives 

The notion of optimization also implies that there are some merit function f(x) or functions 

f(x) = {f1(x), f2(x),…,fn(x)} that can be improved and can be used as a measure of 

effectiveness of the design. The common terminology for such functions is objective 

functions. Optimization with more than one objective is generally referred to as Multi-criteria 

Optimization. For structural optimization problems, weight, displacements, stresses, 

vibrations frequencies, buckling loads, and cost or any combination of these can be used as 

objective function. Optimization problem in this paper is considered as multi-objective 

optimization problem. 

The design of cable stayed bridges involves achieving some design objectives in order to 

check the service and strength criteria. The objectives should be cast in a normalized form. 

They arise from imposing limits in displacement and stresses for the complete bridge under 

permanent and live load. Also, the design should seek to minimize the cost of structure. 

Considering this, goal can be expressed as 

  1

0

1 0
C

g x
C

    (10)  

 

where C is the current cost of the structure and    is a reference cost, which corresponds to 

the initial cost of each analysis and optimization cycle. This ensured that in each cycle the 

coast is always one of the objectives for the optimization algorithm. The cost of the structure 

was formulated as the cost of the materials (concrete and prestressing steel). The materials 

unit prices were obtained consulting supplier companies. 

The second set of objectives comes up from limiting the deck vertical and towers horizontal 

displacement to achieve the desired final deck profile and to minimize the tower bending 

deflections 

  2

0

1 0g x



    (11)  

where  and   are the displacement value and the limit value for the displacement under 

control. 

A third set of goals arises from imposing limits for the stresses of deck and towers for the 

complete bridge under permanent load. These goals are related to the service conditions. 
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According to Eurocode 2 (EN 1992-1-1 2010) recommendations the concrete compressive 

stress were limited to 45 % of the characteristic value of the concrete compressive strength 

(fck), so the concrete remains within the range of linear creep and also longitudinal cracking is 

prevented. The concrete tensile stresses were limited to the 5 % fractile of the characteristic 

axial tensile strength of concrete (fctk, 0, 05) to avoid cracking and, thus ensuring durability: 

  3

,0,05

1 0c

ctk

g x
f


    (12) 

  4 1 0
0,45

c

ck

g x
f


    (13)  

  

where    is acting stress in the concrete members. The tensile and compressive stresses and 

correspondent allowable stresses are used considering the respective signals. 

The concrete members should also be checked for the maximum stresses. This goal can be 

expressed as 

  5 1 0c

allow

g x



    (14) 

 

where    is the acting stress in the concrete members and        is the correspondent 

allowable stress in tension or compression. The acting stresses are calculated from the acting 

axial force (NEd) and bending moment (MEd). The allowable value is computed as a stress 

equivalent to the combined axial force-bending moment design resistance (NRd, MRd) of the 

cross section. This value is obtained from the non-dimensional interaction diagram generated 

for the respective cross section of the concrete member. For these calculations the reinforcing 

steel area was not a design variable and was considered 2% of the concrete cross sectional 

area. This was adopted as mean value of reinforcing steel area for the concrete members and 

represents a common practical value. 
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The remaining objectives concerning the stresses in the stays are 

  6 1 0
0,45 pk

g x
f


    (15) 

  7 1 0
0,1 pk

g x
f


    (16) 

where   and     are the acting stress in the stays and the characteristic value of the 

prestressing steel strength, respectively. If the acting stress is greater than       , the 

Equation 15 applies, if the acting stress is less than or equal to        , the Equation 16 

applies. To avoid detrimental effects of fatigue and according to common design 

recommendations, an upper limit of          was considered for the stresses in the stays (EN 

1993-1-11 2006). A lower limit of         for the tensile stress in the stays was considered to 

ensure their structural efficiency. 

 

3.4. Objective function 

In this thesis, the design of the concrete cable-stayed bridges is formulated as a multi-

objective optimization problem from which a Pareto optimal solution vector is obtained. This 

means that no other feasible vector exists that could decrease one objective without increasing 

at least another one. The optimum vector is usually exists but sometimes it is not unique. The 

objective of the multi-objective optimization problem is to minimize the set of all objectives 

over the design variables. This is achieved by the minimax optimization problem 

 
1 2( , ,...., )x y jMin Max g g g  (17) 

 

This problem is discontinuous and non-differentiable and thus difficult to solve. However, as 

started in (Simões and Templeman, 1989), it may be shown that using the Shannon/Jaynes 

maximum entropy principle and Cauchy`s arithmetic-geometric mean inequality, the solution 

of the minimax optimization problem with objectives defined by Equation 10 to 16 can be 

found indirectly by minimizing the unconstrained convex scalar function, that turns out to be 

the well-known Kreisslmeier-Steinhauser function 
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which is both continuous and differentiable and thus considerably easy to solve. This function 

depends only on one control parameter, ρ, which must not be decreased to ensure that multi-

objective solution is found. In this thesis a constant value for ρ of 10 was used. The 

optimization of the convex scalar function (Equation 18) may be solved by conventional 

quasi-Newton methods, with which an optimal solution (in the Pareto sense) is achieved for 

each trial design. 

The goal functions gj (x) do not have an explicit algebraic form and are only obtained 

numerically from the structural analysis results of a particular design variable vector. The 

strategy adopted was to solve Equation 18 by means of an iterative sequence of explicit 

approximation models. An explicit approximation can be formulated by taking Taylor series 

expansions of all the goal functions gj (x) truncated after the linear term. This gives: 
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  
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where N and M are, respectively, the number of design variables and the number of 

objectives. g0j (x) and dg0j (x)/dxi are the objectives and their sensitivities evaluated for the 

current design variable vector (x0), at which the Taylor series expansion is made. Solving 

Equation 18 for particular numerical values of g0j (x) forms only one iteration of the 

problem`s complete solution. The solution vector (x1) of such iteration represents a new 

design that must be analysed and given new values for g1j (x), dg1j (x)/dxi and (x1), to replace 

those corresponding to (x0) in Equation 18. Iterations continue until changes in the objective 

function become small. Upper and lower bound constraints of 2% of the current values of the 

design variables were imposed as move limits to ensure the accuracy of the explicit 

approximation. The minimization of the objective function was carried out using the 

MATLAB function linprog, which minimize an objective function using linear large-scale 

optimization. 
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3.5. Sensitivity analysis 

The first step in the analysis of the complex structure is spatial discretization of the continuum 

equations into a finite element, finite difference or similar model. The analysis problem then 

requires the solution of algebraic equations (static response), algebraic eigenvalue problems 

(buckling or vibrations) or ordinary differential equations (transient response). The sensitivity 

calculation is then equivalent to the mathematical problem of obtaining the derivatives of the 

solutions of those equations with respect to their coefficients. The simplest technique for 

calculating derivatives of response with respect to design variables is the finite-difference 

approximation. This technique is often computationally expensive, but is easy to implement 

and very popular.  

The simplest finite difference approximation, also used in this thesis, is the first-order 

forward-difference approximation. Given a function u(x) of a design variables x, the forward-

difference approximation 

 
   u x x u xu

x x

  


 
 (20) 

 

If we need to find the derivatives of the structural response with respect to n design variables 

the forward-difference approximation requires n additional analyses and higher order 

approximations are even more expensive. 

The sensitivity analysis module is very important for the performance of the iterative 

optimization algorithm and the evolution of the problem solution depends on the accuracy 

with which the sensitivities are computed. This module allows knowing the way a variation in 

each design variable will affect the design objectives and the objective function of the 

optimization problem. Given the availability of the source code, the discrete nature of cable 

stayed bridge structures and the large number of objectives (stresses and displacement) under 

control, the analytical discrete direct method was used for the sake of sensitivity analysis. The 

sensitivities of displacements are obtained by differentiating the equilibrium equations 

 K u F   (21) 
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from which the following expression is obtained: 

 
i i i

dK du dF
u K

dx dx dx
   (22) 

 

which can be rewritten in the form 

 
vi

i i i

du dF dK
K u Q

dx dx dx
    (23) 

 

where     is the virtual pseudo-load vector of the system with respect to the ith design 

variable. The displacement sensitivities can be expressed as: 

 1

vi

i

du
K Q

dx

   (24) 

 

which requires storing the stiffness matrix, pre-programming stiffness matrix and right-hand 

side derivatives so the displacement derivatives may be computed by the solution of N 

pseudo-load right hand sides. 

The stress sensitivities are determined from the chain derivation of the finite element stress-

displacement relation 

 
e eD B u     (25) 
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The first term of the right-hand side may be directly computed during the computation of 

element contribution for the global system, on the condition that derivative expressions are 

pre-programmed and called on that stage. Since the displacement derivatives are known, the 

second term on the right-hand side is easily computed. 
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3.6. Segmental optimum design 

The segmental method assumes that each member of the structure is composed of a total of D 

segments, each with geometrical properties equal to one of discrete sizes td, d = 1,…, D, such 

that all sizes are represented among the segments. Let lid be the unknown length of the 

segment of member I which belongs to the discrete set td, d = 1,…, D. This is shown in Figure 

3.3 for a member which has three discrete sizes. The geometry of all segments is known, but 

the lengths are unknown. The ordering of the segments along a member is immaterial. 

 

Figure 3.2 - Conventional member and segmental member   

 

td represents discrete thickness for the plates of the deck and pylons cross sections. 

Considering that, the structure volume minimization problem using the segmental method can 

be formulated as: 

    minZ C X   (27) 
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Subject to 
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Equation 29 means that the sum of the segment lengths of each bar must total the bar length; 
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Moreover the stress in each element must be less than admissible value. Also displacement 

constraints could be formulated 
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The cost vector C, contains the values of the D discrete sections available and vector X 

contains the design variables that are the lengths     of all the segments of all members. To 

enable a computer solution of the design optimization problem it is first necessary to 

formulate the stress   in each member as an explicit function of the design variables. Since 

stress varies inversely with the section properties a good quality explicit approximation of 

each stress , is provided by the first order Taylor series: 

 
0

1
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i

i i

d
x

dx
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where the subscription zero (0) defines known quantities for the current structure, while x, are 

the design variables and     denotes the variation in that design variables. Problem z is an LP 

problem which may be solved by any LP algorithm, and will yield what can be termed 

segmental optimum design. 
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Chapter 4.  Numerical example and results 

 

 

4.1.  Description of numerical model 

To illustrate the features of proposal numerical method, it was applied to analyse a cable-

stayed bridge structure. This example is composed by a symmetrical concrete cable-stayed 

bridge with total length of 284 m, with central span of 148 m and lateral spans of 68 m. 

pylons total height is 52 m with deck placed 15 m above the foundations. Figure 4.1 presents 

the geometry of bride example and on Figure 4.2 is presented zones for cross-sections of the 

bridge. 

 

Figure 4.1 - Geometry of cable-stay bride 

 

 
Figure 4.2 – Zones for the cross-section design variables 
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Half of the bridge was modelled, by using structural and load symmetry. It was considered 

actions of self-weight of deck and the construction load of 1 kN/m
2 

due to personal and hand 

tool. The allowable stresses were set at 35 MPa for the deck and pylon and 500 MPa for cable 

stay elements. Minimum stress in stays is prescribed as 10% of allowable stress. Table 4.1 

present the properties of materials used in the numerical model. 

 

Table 4.1 - properties of materials 

4.2. Design variables 

For the numerical example analysed the overall geometry of the bridge and the deck widths 

(19.00 and 9.00 m) were pre-assigned constants parameters. For the definition of the sizing 

design variables two zones in pylon and three zones in deck were considered as shown in 

Figure 4.3 for the cross-sectional geometry of the deck was considered single-cell box cross 

section and for the pylons rectangular hollow sections. 

 

 

 

     

 

 

 

Figure 4.3 - Cross-sectional geometry of the bridge elements 
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A continuous design was made in paper (Martins, Simões, Negrão, 2014) to obtain a starting 

point for the discrete design. Table 4.3 shows the initial values of the design variables 

obtained with the continuous optimization procedure. A total of 18 design variables were 

considered and they are described in Tables 4.2 

Number Design variable 

1 h deck cross-section Zone 3 

2 tfs=tfi deck cross-section Zone 3 

3 tw deck cross-section Zone 3 

4 h deck cross-section Zone 4 

5 tfs=tfi deck cross-section Zone 4 

6 tw deck cross-section Zone 4 

7 h deck cross-section Zone 5 

8 tfs=tfi deck cross-section Zone 5 

9 tw deck cross-section Zone 5 

10 h pylon cross-section Zone 1 

11 h pylon cross-section Zone 2 

12 b pylon cross-section Zone 1 

13 b pylon cross-section Zone 2 

14 tw pylon cross-section Zone 1 

15 tw pylon cross-section Zone 2 

16 tfi pylon cross-section Zone 1 

17 tfi pylon cross-section Zone 2 

18-33 cable instalation forces for stays 1 to 16 

33-49 cable adjstment forces for stays 1 to 16 
 

Table 4.2 - Design variables (single-cell box examples) 
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Number Inital value Design variable 

1 1,878 h deck cross-section Zone 3 

2 0,163 tfs=tfi deck cross-section Zone 3 

3 0,163 tw deck cross-section Zone 3 

4 2,731 h deck cross-section Zone 4 

5 0,152 tfs deck cross-section Zone 4 

5 0,176 tfi deck cross-section Zone 4 

6 0,150 tw deck cross-section Zone 4 

7 1,576 h deck cross-section Zone 5 

8 0,150 tfs=tfi deck cross-section Zone 5 

9 0,150 tw deck cross-section Zone 5 

10 4,959 h pylon cross-section Zone 1 

11 4,691 h pylon cross-section Zone 2 

12 4,759 b pylon cross-section Zone 1 

13 4,691 b pylon cross-section Zone 2 

14 0,391 tw pylon cross-section Zone 1 

15 0,391 tw pylon cross-section Zone 2 

16 0,391 tfi pylon cross-section Zone 1 

17 0,391 tfi pylon cross-section Zone 2 
 

Table 4.3 – Initial values of design variables (single-cell box examples) 

 

4.3. Optimum design results 

The solution of the segmental method was obtained by linear programming. In this work 

large-scale algorithm was used. 

In order to obtain a discrete optimum design two different approaches were made. In the first 

one the optimization of the pylon cross-sections was made independently from the discrete 

solution of the deck cross-section. In the second one the discrete solution for the pylon cross-

section was obtained taking into account the discrete solution achieved for the deck cross-

section. 

The initial values and the results obtained after optimization and the discrete optimum 

obtained by rounding the continuous optimum design are presented in Tables 4.4  and 4.5, for 

the cable forces and the sizing design variables, respectively.  
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Design 

variable 

Cable installation forces [kN] 

Initial Final Adjustment for Discrete Solution 

18 1000 1000 990 

19 1000 985 983 

20 1500 1484 1454 

21 1500 1464 1457 

22 1500 1506 1505 

23 1500 1457 1457 

24 1500 1525 1527 

25 1500 1542 1542 

26 2000 2062 2066 

27 2000 2232 2231 

28 2000 2118 2125 

29 2000 2350 2348 

30 2000 2360 2370 

31 2000 2486 2482 

32 2000 2249 2263 

33 2000 2671 2665 

 

Table 4.4 – Cable installation forces (initial, final continuous and discrete values) 

 

The results presented in Table 4.4 show that the cable forces increase from the tower to the 

mid-span. The forces are similar for symmetrically disposed stays. As desired for an adequate 

structural behaviour the highest forces occur in the backstays. These forces counterbalance the 

largest load in the central span when compared with the side span and control the tower 

bending deflections and stresses. 
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Figure 4.4 shows the evolution of the objective function and of the bridge cost during the 

analysis-and-optimization process.  

 

Figure 4.4 – Evolution of the bridge cost vs number of iterations 
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Sizing Design 

Variables 

Continuous 

Initial 

Discrete 

Final 

1 1,878 1,550 

2 0,163 0,550 

3 0,163 0,150 

4 2,731 2,250 

5 0,152 0,150 

6 0,176 0,500 

7 1,576 1,550 

8 0,15 0,750 

9 0,15 0,200 

10 4,959 2,950 

11 4,691 2,350 

12 4,759 2,500 

13 4,691 2,300 

14 0,391 0,200 

15 0,391 0,200 

16 0,391 0,200 

17 0,391 0,200 

 

Table 4.5 – Sizing design variables (initial continuous and discrete values) 

 

Design 

variable 

Cable adjustment forces [kN] 

Initial Final Adjustment for Discrete Solution 

34 1500 1523 1522 

35 1500 1483 1483 

36 2000 2019 2018 

37 2000 1969 1970 

38 2000 1977 1977 

39 2000 1949 1950 

40 2000 1919 1921 

41 2000 1955 1956 

42 3000 2910 2915 

43 3000 2988 2988 

44 3000 3003 3011 

45 3000 3048 3048 

46 3000 3116 3128 

47 3000 3135 3133 

48 3500 3699 3716 

49 3000 3250 3247 

 

 Table 4.6 – Cable adjustment forces (initial, final continuous and for discrete sizing variables) 
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In this example, the deck represents the largest contribution to the bridge cost with a value of 

76.7% of the total cost. The cable stays represent 13.2% and the towers represent 10.1% of 

the bridge total cost. 

 

Continuous 

Deck Stays Towers Cost 
% Cost 

increase 

190.389,40 € 
31.227,98 

€ 

22.999,46 

€ 
244.616 

€ 
  

77.8% 12.8% 9.4% 100.0%   

Discrete before force 

adjustment 
      248,67 € 1.66% 

Discrete after force 

adjustment 

190.590,86 € 
32.764,34 

€ 

25.275,02 

€ 
248.630 

€ 
1.64% 

76.7% 13.2% 10.1% 100.0%   

 

Table 4.7 – Deck, tower and stays costs 

Figures 4.5 and 4.6 represent vertical displacements and normal stresses, respectively for the 

continuous optimum and the discrete solution after cable adjustment. The feasible discrete 

optimization (after the cable adjustment forces are found) leads to a cost increase of 1.60%. 

The segmental optimization is unnecessary here. 

 

 

 

 



Discrete optimum design of cable-stayed bridges Numerical example and results 
   

Andrea Đerek 54 

 

 

Figure 4.5 – Deck vertical displacements (continuous and discrete solutions after cable adjustment) 

 

 

Figure 4.6 – Deck normal stresses (continuous and discrete solution after cable adjustment) 
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Chapter 5.  Conclusions 

 

 

In this thesis, the optimum design of concrete cable-stayed bridge is formulated as multi-

objective optimization problem with objectives of minimum cost, minimum displacement and 

stresses. According to the results the following conclusions can be drawn: 

- The results show that is possible to formulated and solve the design problem of 

concrete cable-stayed bridge as  multi-objective optimization problem considering the 

cable pre-stressing force and cross-sectional dimensions of deck and pylon as design 

variables 

- The consideration of cable forces, cable areas, deck and tower sizing design variables 

allows the cost minimization and obtaining structural efficient solutions with adequate 

values of displacements and stresses throughout the structure. 

- The procedure used in this work seems to be adequate to the discrete optimization of a 

cable-stayed bridge revealing to be more efficient than combinatorial or genetic 

algorithms. 

- The segmental method employed here extends the original concept of displacement 

based design to accommodate stresses by employing an explicit approximation of 

these constraints.    
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