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Grgo Kamber, mag.ing.aedif. 

Adaptive numerical modeling of engineering problems using 

hierarchical Fup basis functions and Control Volume IsoGeometric 

Analysis 

 
Abstract: 

The main objective of this thesis is to utilize the powerful approximation properties of Fup 

basis functions for numerical solutions of engineering problems with highly localized steep 

gradients while controlling spurious numerical osicllations and describing different spatial 

scales. 

The concept of isogeometric analysis (IGA) is presented as a unified framework for 

multiscale representation of the geometry and solution. This fundamentally high-order approach 

enables the description of all fields as continuous and smooth functions by using a linear 

combination of spline basis functions. Classical IGA usually employs Galerkin or collocation 

approach using B-splines or NURBS as basis functions. However, in this thesis, a third concept 

in the form of control volume isogeometric analysis (CV-IGA) is used with Fup basis functions 

which represent infinitely smooth splines. Novel hierarchical Fup (HF) basis functions is 

constructed, enabling a local hp-refinement such that they can replace certain basis functions at 

one resolution level with new basis functions at the next resolution level that have a smaller 

length of the compact support (h-refinement), but also higher order (p-refinement). This hp-

refinement property enables spectral convergence which is significant improvement in 

comparison to the hierarchical truncated B-splines which enable h-refinement and polynomial 

convergence. Thus, in domain zones with larger gradients, the algorithm uses smaller local 

spatial scales, while in other region, larger spatial scales are used, controlling the numerical error 

by the prescribed accuracy. The efficiency and accuracy of the adaptive algorithm is verified 

with some classic 1D and 2D benchmark test cases with application to the engineering problems 

with highly localized steep gradients and advection-dominated problems. 

 

Keywords: control volume, isogeometric analysis, spline basis functions, hierarchical Fup basis 

functions, adaptive numerical modeling, advection-dominated problems, local hp-refinement 
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Adaptivno numeričko modeliranje inženjerskih problema koristeći 

hijerarhijske Fup bazne funkcije i IzoGeometrijsku Analizu Kontrolnih 

Volumena 

 
Sažetak: 

Glavni cilj ove teze je iskoristiti moćna aproksimacijska svojstva Fup baznih funkcija za 

numeričko modeliranje inženjerskih problema s izrazito lokaliziranim gradijentima uz kontrolu 

numeričkih oscilacija. 

Predstavljen je koncept izogeometrijske analize (IGA) kao cjeloviti pristup za 

višerezolucijsko modeliranje geometrije i rješenja. Pristup fundamentalno višeg reda omogućuje 

opis različitih polja kao kontinuiranih i glatkih funkcija koristeći linearnu kombinaciju spline 

baznih funkcija. Klasična IGA obično koristi Galerkin-ov ili kolokacijski pristup koristeći B-

spline ili NURBS kao bazne funkcije. Međutim, u ovoj tezi se koristi treći koncept u obliku 

izogeometrijske analize kontrolnih volumena (CV-IGA) uz primjenu Fup baznih funkcija koje 

predstavljaju beskonačno glatke spline funkcije. Konstruirane su nove hijerarhijske Fup (HF) 

bazne funkcije koje omogućuju lokalno hp-poboljšanje tako da zamjenjuju određene bazne 

funkcije na jednom nivou novim baznim funkcijama na višem nivou gdje imaju manju duljinu 

kompaktnog nosača (h-poboljšanje), ali i viši red (p-poboljšanje). Svojstvo hp poboljšanja je da 

omogućuje spektralnu konvergenciju što predstavlja značajan doprinos u odnosu na modificirane 

hijerarhijske B-splineove koji omogućavaju h-poboljšanje i polinomsku konvergenciju. Dakle, u 

dijelovima domene gdje su rješenja najzahtjevnija, algoritam koristi bazne funkcije višeg reda s 

manjim kompaktnim nosačem, dok u ostalim dijelovima koristi rjeđi raspored baznih funkcija 

nižeg reda kontrolirajući numeričku pogrešku s definiranom točnošću. Učinkovitost i točnost 

adaptivnog algoritma provjerena je na nekim od klasičnih 1D i 2D referentnih numeričkih 

testova. 

 

Ključne riječi: kontrolni volumeni, izogeometrijska analiza, spline bazne funkcije, hijerarhijske 

Fup bazne funkcije, adaptivno numeričko modeliranje, advektivno-dominantni problemi, lokalno 

hp-poboljšanje 
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Chapter 1

Introduction

1.1 Overview and motivation

Many industrial and real applicative problems in computational mechanics
have been solved by numerical simulations that require large computational
resources including parallel processing and the use of CPU/GPU clusters.
Therefore, it is of great importance that computer resources are used as effi-
ciently as possible. In parallel with the technological development and use of
powerful computers in solving various engineering problems, there has been
an intensive development of realistic mathematical models in science. Such
models are often expressed as boundary (or initial-boundary) problems de-
fined by a particular set of partial differential equations (PDEs). Since exact
solution of PDE is most often not known, to predict various physical phe-
nomena it is necessary to approximate the problem numerically.

Numerical modeling of such processes typically faces many difficulties,
especially in modeling abrupt localized solution changes using appropri-
ate numerical control. The implementation of these models requires an ef-
ficient numerical analysis and description of all spatial/temporal scales that
describe the solution. Many different numerical approaches and methods
have been proposed in recent decades. In general, each method has its ad-
vantages, but also disadvantages, and none can be singled out as the best for
all problems. The best known and most flexible methods are finite element
method (FEM), finite difference method (FDM) and finite volume method
(FVM) [1]–[9]. There are various other methods such as the spectral element
method (SEM), boundary element method (BEM), discrete element method
(DEM) which, together with various collocation, meshfree and other hybrid
approaches are only practical for limited classes of problems.

Physical laws for space and time dependent problems are usually de-
scribed by partial differential equations (PDEs). For most problems and ge-
ometric shapes of the domain, the corresponding PDE cannot be solved by
analytical methods. Instead, approximate solutions are determined, which
are usually based on different types of discretization. Discretization meth-
ods approximate PDEs by a set of equations of numerical models that can be
solved with numerical methods. The solution of the numerical equations of
the model represents an approximation of the real solution of the PDE.

First, it is important to understand the different forms of PDEs. PDEs
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can be classified into elliptical, hyperbolic and parabolic types. When solv-
ing these differential equations, it is necessary to specify boundary and/or
initial conditions. The required input parameters can be estimated based
on the type of PDE. Examples of PDEs in each category include the Pois-
son equation (elliptical), the wave equation (hyperbolic), and Fourier’s law
(parabolic). Regarding the interpolation profiles for the discretization of the
governing PDEs, two main approaches have historically dominated in the
field of computational mechanics.

The first and oldest procedure is the finite difference method (FDM). The
starting point of the FDM is to cover the domain with a (mostly uniform)
grid. At each point of the grid, the differential form of PDE is discretized by
approximating the derivatives with expressions of finite differences. These
expressions are generally derived by using Taylor series expansion or poly-
nomial fitting through a certain number of specific neighboring grid points.
Since each point of the grid gives one discretized (algebraic) equation with
several unknowns, the equations of all points must be combined in the sys-
tem and solved simultaneously. The final result of the FDM are the solution
values at the grid points. However, there is no explicit reference how a so-
lution behaves between grid points. In this sense, a FDM can be thought of
as akin to a laboratory experiment, in which a set of instrument readings en-
ables us to establish the distribution of the measured quantity in the domain
under investigation (Patankar [10]). Apart from the fact that the conservative
properties of the equations are generally not preserved, the main drawback
due to which FDM does not have wide application is its limitation to simple
geometries.

The finite volume method (FVM) can be considered a natural improve-
ment of the FDM. In general, the solution domain is divided into an finite
number of non-overlapping control volumes (CVs), and a conservative form
of PDE is integrated over each CV. The volume integrals over the CVs are
converted into surface integrals by the divergence theorem, and interpola-
tion is used to express values at the boundaries of the CV in terms of nodal
(center of CV) values. The FVM is conservative by its construction and its
main advantages are the direct physical meaning of the discretized equations
and a formulation that is also suitable for complex geometries.

The FDM and FVM do not use interpolation profiles in terms of a de-
fined interpolation space, such as trial basis functions space. Rather, they use
local approximation profiles. This local interpolation profiles are not neces-
sarily the same for all terms in the governing equations. Even though this
approach permits complete freedom, as mentioned before, the solution is not
uniquely defined throughout the domain, except for discrete nodal (grid)
points. Moreover, the consequence of using interpolation profiles that are
mostly one-dimensional is usually reduced accuracy for multidimensional
problems. This is particularly true when first-order interpolation is used on
meshes oblique to flow gradients [10].

The second widely used approach to interpolation profiles is the one
adopted in finite element method (FEM). First, the trial vector space of basis
functions is defined, then a linear combination of these functions is used for
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both interpolation and differentiation during the discretization process. One
of the benefits of using FEM is that it offers great freedom in the selection of
discretization, both in the elements that may be used to discretize space and
the basis functions. However, the most widely used basis functions among
the FEM community are Lagrangian polynomials.

The FEM finds its applications in almost all fields of computational me-
chanics. Good approximation properties, ability to handle arbitrary geome-
tries, straightforward construction of higher order approximations on un-
structured grids and strong mathematical background (e.g., Zienkiewicz et
al. [11] and Bathe [12]) are some of the main strengths of the FEM [13]. More-
over, FEM is considered to have best approximation properties when ap-
plied on problems governed by symmetric (self-adjoin) differential opera-
tors. However, presence of convection/advection operators in the governing
equations for fluid flow renders the system of equation to be non-symmetric
and the best approximation property in energy norm, which gave FEM a
success in structural mechanics, is lost. Furthermore, this non-symmetric
character of fluid flow is the main reason for stability issues so special stabi-
lization techniques are needed when FEM is used for simulation of complex
fluid flows. Moreover, absence of the local conservation properties and flux
discontinuities between finite elements are additional weaknesses of FEM.

The numerical solutions produced by FEM are continuous and smooth
inside a particular element. However, usage of classical Lagrangian basis
functions ensures only C0 continuity on the element boundaries. Moreover,
the gap between computer-aided design (CAD) for the geometry description
on the one hand and finite element analysis (FEA) for the solution descrip-
tion on the other hand has been long evident. It is estimated that about 80%
of overall analysis time is devoted to mesh generation in the automotive,
aerospace, and ship building industries. In the automotive industry, a mesh
for an entire vehicle takes about four months to create [14]. Furthermore,
once a mesh is constructed, during each mesh refinement a communication
with the CAD system is necessary and since this link is often unavailable
explains why adaptive refinement is still primarily an academic endeavor
rather than an industrial technology.

This gap between CAD systems and FEA (as well as overall numerical
analysis) is due mostly to differences in the used interpolation (basis) func-
tions. Whereas classical polynomials have dominated in the field of numer-
ical analysis, spline-based basis functions (e.g., B-splines, nonuniform ratio-
nal B-splines (NURBS) [14], T-splines [15], hierarchical B-splines (HB) [16]
etc.) play a crucial role in the field of computational geometry. True popu-
larity of spline functions for numerical analysis was achieved by the intro-
duction of the concept of isogeometric analysis (Hughes et al. [14] and Cot-
trell et al. [17]). The main idea of isogeometric analysis (IGA) is to bridge
the gap between FEA to describe a numerical solution and a CAD system
to describe geometry using the same type of spline basis functions for both
systems. The core of IGA is the isoparametric concept (widely used in clas-
sical FEM), where the basis functions used to approximate the solution field
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are also used to describe the geometry. IGA turns this idea in a different di-
rection and selects a basis used to describe geometry in CAD systems as the
basis for numerical approximating of unknown fields. The key difference is
that IGA allows accurate representation of geometry in CAD terms in con-
trast to classical FEA where geometry is only approximated.

IGA is closely related to the meshless or mesh-free methodologies due to
its use of spline basis functions. Application of spline basis functions enables
some properties not seen in FEM, such as exact geometry description, us-
age of higher-order basis functions, higher continuity of solution and geom-
etry, more efficient refinement adaptive procedures and multiresolution ap-
proach. Efficient numerical modeling using spline functions does not always
have to be associated exclusively with IGA involving geometry transforma-
tions, because everything can only be performed in the physical domain. Fur-
thermore, the geometry constraints and boundary conditions can be satisfied
exactly using the Rvachev solution structure method (see Rvachev et al. [18],
Höllig et al. [19], and Kozulić and Gotovac [20]).

The development of adaptive methods [21]–[24] for local refinement and
coarsening became one of the most researched topics within IGA. Since a
fundamental limitation of traditional NURBS is the lack of potential for lo-
cal refinement, several solutions have been derived, such as T-splines [15],
[25]–[30], hierarchical B-splines (HB) [16], truncated hierarchical B-splines
(THB) [31]–[35] and locally refined B-splines (LR) [36]. Furthermore, linear
independence, stability and partition of unity as well as local refinement and
adaptation became center topics for these adaptive solutions.

FIGURE 1.1: Refinement procedures

Adaptive isogeometric methods attract a lot of attention and are a very
active field of research. Improvement procedures are h-refinement (Figure
1.1b; spline functions of the same order but smaller knot intervals, i.e. higher
frequencies; changing element size), p-refinement (Figure 1.1c; higher degree
of basis functions), r-refinement (Figure 1.1d; redesigning the mesh without
changing the basis order; keep the number of nodes constant and adjust their
positions) and their combination. Even though B-splines and NURBS are
most commonly used spline technologies in the isogeometric settings, due
to their tensor product structure, they are not well suited to treat localized
phenomena. Hierarchical B-splines (HB) constitute one of the most promis-
ing solutions to easily define adaptive spline base which preserve the non-
negativity of standard B-splines and enables the possibility to properly deal
with local problems. However, since the hierarchical B-spline basis func-
tions in non-rational form do not satisfy partition of unity, it may produce
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ill-shaped control mashes at the refined level. To overcome this deficiency,
the truncated mechanism was first developed by Giannelli et al. [16] for the
hierarchical B-spline basis functions to form a partition of unity and to de-
crease the overlapping of basis functions for better numerical conditioning.

In addition to spline functions, relatively lesser-known atomic or Rbf ba-
sis functions have been used in recent times (Rvachev’s basis functions, see
Rvachev and Rvachev [37] and Gotovac [38]). Rbf or atomic basis functions
can be placed between classical polynomials and spline functions. However,
in practice, their use as basis functions is closer to splines or wavelets (see
Beylkin and Keiser [39]). Gotovac [38] systematizes the existing knowledge
about atomic basis functions and transforms them into a numerically appro-
priate form. Kozulić [40] and Gotovac and Kozulić [41] showed the basic
possibilities of using these functions in structural mechanics and numerical
analysis. The use of Fup basis functions, as the most commonly used atomic
basis functions, has been shown to solve the problem of signal processing
(see Kravchenko et al. [42]), the initial problem (see Gotovac and Kozulić [43])
and the boundary problems using the non-adaptive Fup collocation method
(see Kozulić and Gotovac [44] and Gotovac et al. [45]).

Gotovac et al. [46] presented a true multiresolution approach based on the
Adaptive Fup Collocation Method (AFCM). The heart of the AFCM method-
ology lies in the Fup basis functions in conjunction with the collocation pro-
cedure. However, the main drawback was the lack of global and local mass
balance due to the properties of the collocation framework, computationally
expensive head solution to obtain an accurate velocity field without numeri-
cal oscillations for high heterogeneity cases and inability to describe the gen-
eral irregular geometry. Applications of the AFCM have been shown for the
analysis of the flow and transport in heterogeneous porous media relating to
the travel time statistics Gotovac et al. [47]. Brajcic Kurbasa [48] presented
atomic basis functions of the exponential type. For the first time, the prop-
erties of exponential ABFs were investigated in detail and expressions for
calculating the value of the function and all necessary derivatives at an ar-
bitrary point of the domain were derived, as well as some features neces-
sary for their practical application in a form suitable for numerical analy-
sis. Malenica [49] used Fup basis functions as representative members of the
spline family in the development of a novel numerical model for groundwa-
ter flow in karst aquifers. Futhermore, it also presents the development of
a full space-time adaptive collocation algorithm with particular application
to advection-dominated problems while Kamber et al. [50] set foundation for
adaptive spatial procedure using Fup basis functions with control volume
formulation.

1.2 Hypothesis

The main objective of this thesis is to demonstrate the capabilities of spline
basis functions through the development of novel numerical method with
specific application to problems with highly localized steep gradients while
controlling spurious numerical oscillations. Emphasis is given to Fup basis
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functions (Rvachev and Rvachev [37] and Gotovac and Kozulić [41]) as rep-
resentative member of the spline family. The Fup function can be obtained by
a convolution procedure using contracted B-splines and infinitely derivable
up atomic function. In this way, Fup is closely related to B-spline. However,
Fup basis functions have better approximation properties compared to the B-
splines due to the convolution with the up function containing all orders of
polynomials by parts and infinite continuity. Due to this property, adaptive
procedure using Fup basis functions should allow much more accurate so-
lutions compared to adaptive solutions obtained by B-spline basis functions.
The particular contribution of this thesis lies in the property of hierarchical
Fup basis functions, in relation to B-splines, enabling local hp-refinement,
which means that higher resolution levels have basis functions not only of
smaller length of the compact support (higher frequencies; h-refinement) but
also contain basis functions of higher order (p-refinement). Thus, the basic
hypothesis behind the proposed method is to obtain spectral convergence
for problems with highly localized steep gradients, while the existing hier-
archical B-splines (HB) and truncated hierarchical B-splines (THB) achieve
convergence determined by the degree of the polynomial of the basis func-
tions.

This work can be considered as an upgrade of the previously developed
adaptive Fup collocation method (AFCM; [51]). The main idea of the AFCM
is to dynamically adapt the computational grid during the simulation so that
the algorithm uses more collocation points (i.e., higher resolutions) only in
areas where the solution changes are demanding (e.g., localized step gradi-
ents or discontinuities). Furthermore, formulation of control volumes was
used in numerical modeling of groundwater flow in karst aquifers Malenica
[49] and Malenica et al. [52], and was shown to contain several interesting
properties such as: local and global conservation properties, direct physi-
cal meaning of the discretized equations, very close to Gallerkin’s solution
for much lower computational costs, and increased accuracy and stability in
relation to the aforementioned collocation method. Therefore, in this thesis
for the first time the hierarchical Fup basis functions (one-dimensional and
two-dimensional) with control volume formulation will be presented.

Due to certain similar properties with classical IGA [14], [17], used
method is called control volume isogeometric analysis (CV-IGA) [49], [52].
However, since classical isogeometric analysis mostly uses B-spline or
NURBS basis functions in conjunction with the Galerkin [8] or collocation
formulation, here, the proposed model will be based on Fup basis functions
and the control volumes formulation enabling local and global mass conser-
vation, as well as approximate solutions of higher smoothness. The appli-
cation of CV-IGA to real application problems will be presented in the latter
part of the thesis.

The main goal of this thesis is to develop hierarchical Fup basis functions
(HF) and to use good approximation properties of these functions in creating
new adaptive technique within control volume isogeometric analysis (CV-
IGA) for numerical solutions of engineering problems arising in the field of
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structural mechanics and fluid mechanics. The formulation of control vol-
umes would allow for local and global conservation properties, with com-
putational costs that are between Galerkin (high CPU price) and collocation
(low CPU price).

The developed adaptive algorithm will be applied in solving demand-
ing engineering problems. First, an analysis of the 1-D problem will be
performed starting with the approximation of the known function to show
some basic parameters of the adaptive algorithm. Then, on the example
of the advective-dispersion equation (ADE), the efficiency of new adaptive
method will be presented through numerical solving of the differential equa-
tion when in most cases we do not know the analytical solution. In particu-
lar, a comparison with analogous h-adaptive procedures based on IGA and
hierarchically modified B-splines will be shown. Furthermore, the method
is extended to 2-D analysis and verified on problems such as mass and en-
ergy conduction (heat) generally shown with the diffusion and advection-
dispersion equation, the elasticity problem, and in solving Poisson equation.
A comparison of numerical results obtained with hierarchical B-splines and
the achievement of spectral convergence obtained with the novel numerical
procedure will be shown.

1.3 Outline

Chapter 2 provides the background of the classical numerical methods such
as finite difference method, finite volume method and finite element method.

In Chapter 3 the mathematical background of the spline basis functions is
provided with addition of the less known Fup basis functions that belong to
the class of atomic functions and can be regarded as infinitely differentiable
B-splines. Furthermore, a detailed description of Fup basis functions and
their relationship with B-splines is given.

Chapter 4 addresses the isogeometric (IGA) approach with addition of
the three numerical formulations: Galerkin, Collocation and Control volume.
Two of those formulations can be regarded as classical IGA formulations,
more specifically Galerkin and Collocation formulations are usually used for
spatial discretization. However, here a novel control volume IGA formula-
tion is presented in addition to two classical IGA formulations. The concept
of IGA is presented as a unified framework for a multi-scale description of
the geometry and solution fields, where all approximated fields are repre-
sented as continuous and smooth functions.

In Chapter 5, hierarchical spline functions, i.e. hierarchical B-spline basis
functions, are presented with its refinement procedures. Since the hierarchi-
cal B-spline basis functions in non-rational form do not satisfy partition of
unity, the truncated mechanism was introduced to overcome that deficiency.
In addition to hierarchical B-splines, more efficient truncated hierarchical B-
splines procedure is presented.

Chapter 6 presents the development of the novel adaptive algorithm that
is based on Fup basis functions that belong to the class of atomic func-
tions. Hierarchical Fup (HF) basis functions that have the option of local
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hp-refinement such that they can replace certain basis functions at one res-
olution level with new basis functions at the next resolution level that have
a smaller length of the compact support (h-refinement) but also higher or-
der (p-refinement) is presented in detail. Satisfying the boundary conditions,
adaptive criteria and various stabilization methods are also described.

Chapter 7 presents the numerical results confirming efficiency of the de-
veloped method (described in Chapter 6) applied to some of the classical
numerical problems such as advection-dispersion problem, heat conduction
problem, linear elasticity problem, etc.

Finally, Chapter 8 summarizes the most important findings of the thesis
and provides suggestions for future research.
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Chapter 2

Classical numerical methods

This chapter serves as review of some classical numerical methods prior in-
troduction of the isogeometric analysis. Furthermore, the first examples of
adaptive numerical modeling were focused upon using classical numerical
methods such as finite difference (FDM), finite element (FEM) and finite vol-
ume methods (FVM) [1]–[9].

2.1 Finite difference method

The finite difference approximations for derivatives can be considered as one
of the simplest and of the oldest methods to solve differential equations.
Their development was stimulated by the emergence of computers that of-
fered a convenient framework for dealing with complex problems of science
and technology. The main idea of FDM is focused on approximating differen-
tials. The domain is partitioned in time and in space and approximations of
the solution are computed at those points (time and space points). The differ-
ence between the exact solution and the numerical solution is determined by
the error that is committed by going from a differential operator to a differ-
ence operator. This error is called the discretization error or truncation error,
reflecting the fact that a finite part of a Taylor series is used in the approxi-
mation. In contrast to this, weighted residual methods evaluate the integral
of a differential equation while optimizing an approximation such that the
integrals of the approximated solutions and the correct solution match on a
given domain.

Let us consider one-dimensional case for simplicity. The main concept be-
hind any finite difference scheme is connected to the definition of the deriva-
tive of a smooth function u at a point x ∈ R:

u′ (x) = lim
∆x→0

u (x + ∆x)− u (x)
∆x

(2.1)

and to the fact that the quotient on the right-hand side provides a “good”
approximation of the derivative when ∆x tends to the 0. In other words,
to get a good approximation ∆x needs to be sufficiently small. Moreover,
the approximation is good when the error committed in this approximation
tends towards zero when ∆x tends to zero. If the function u is sufficiently
smooth in the neighborhood of x, it is possible to quantify this error using a
Taylor expansion. The most common equations are:
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• Backward finite difference schemes for approximating first derivatives

du
dx

=
u (x)− u (x− ∆x)

∆x
+ O (∆x) (2.2)

• Central finite difference schemes for approximating first derivatives

du
dx

=
u (x + ∆x)− u (x− ∆x)

2∆x
+ O

(
∆x2

)
(2.3)

• Forward finite difference schemes for approximating first derivatives

du
dx

=
u (x + ∆x)− u (x)

∆x
+ O (∆x) (2.4)

• Central finite difference schemes for approximating second derivatives

d2u
dx2 =

u (x + ∆x)− 2u (x) + u (x− ∆x)
∆x2 + O

(
∆x2

)
(2.5)

where the term O (∆x) in (2.2) and (2.4) indicates that error of the approxi-
mation is proportional to ∆x and analogously the term O

(
∆x2) in (2.3) and

(2.5) indicates that error of the approximation is proportional to ∆x2.
The finite change of the solution is approximated on a very small finite

interval using one of these equations. All of these equations are linear which
means that the solution is linearly approximated.

FIGURE 2.1: Treatment of complex geometries with FDM

The main advantage of FDM is the fact that it is a very exact method
with solutions usually significantly closer to the solution, in comparison to
results obtained from, e.g., weighted residual methods. However, there are
several disadvantages. The most severe disadvantage is the requirement for
structured grids because it usually does not cope very well with complex
(Figure 2.1) or multi-scale geometries and is computationally very expensive.
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Furthermore, FEM and FVM have significantly less strict requirements on
grid structuring and allow locally adapting the grid to suit the local geometry
which gives the main advantages of both methods in comparison with FDM.

However, many differential equations involve time-dependency, which
gives rise to a time-dependent differential, finite difference schemes becomes
essential for both FEM and FVM. Many numerical solvers will use FEM and
FVM to solve the space-dependent terms of a differential equation and then
use one of the previously mention schemes (backward finite, central finite or
forward finite) to step in time. Obviously, the main solution of the differential
equation is then obtained using a combination of FVM or FEM for the space-
dependent terms and FDM for the time-dependent terms.

2.2 Finite volume method

The next method that will be presented is the finite volume method that can
be considered as a natural improvement of FDM. FVM can be used on all
differential equations, which can be written in divergence form (the equation
is written using divergence operators).

Generally, the calculation domain is subdivided into an finite number of
nonoverlapping control volumes (CVs) such that there is one CV surround-
ing each node (see Figure 2.2), and the conservative form of the governing
PDEs is integrated over each CV. Gauss theorem is usually applied to con-
vert the volume integral over the divergence into a surface integral across
the boundaries. Thus, the integral is therefore turned from integrating the
differential of the dependent variable inside of the cells into surface integrals
of the fluxes of the dependent variable across the boundary of the cells. This
substantially simplifies the differential equation. The interpolation is used to
express the values at the CV boundaries in terms of nodal values. Again, like
in FDM, the final results are the solution values at the nodal points. Since dif-
ferent interpolation profiles can be used for different expressions that occur
in the governing equations, there is no explicit reference for the variation of
the solution between the nodal points.

Approach used within FVM is based on the concept that all mass that
would “diverge” out of the CV must inherently pass the boundary of the
CV at some time, and if this flux is integrated over time, the total change of
mass in the CV can be derived. Moreover, a conservation approach of the
dependent variable is obtained by monitoring the fluxes of the dependent
variable across the boundary of the cells.

Example Consider one-dimensional heat conduction equation governed
by

∂T
∂t
− c2∆T = 0 (2.6)

where c2 is a positive constant (thermal conductivity) which can be thought
of as a “diffusion coefficient” for heat and T describes the temperature func-
tion along a one-dimensional domain.
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FIGURE 2.2: 2D computational domain subdivided into an fi-
nite number of nonoverlapping CVs

In order to obtain the conservative form of (2.6) we need to integrate this
equation over the control volume resulting in∫

CV

∂T
∂t

dCV −
∫

CV

c2 ∂2T
∂x2 dCV = 0 (2.7)

Now we can exchange the differential and the integral of the first term
on the left-hand side, because our control volume is fixed in space and not
dependent on time. Moreover, this allows us to convert the partial into a
regular differential. Second, we can use Gauss theorem to convert the volume
integrals into surface integrals. Doing this, we can rewrite (2.7) to

d
dt

∫
CV

TdCV −
∫

∂CV

c2 ∂T
∂x

nd∂CV = 0 (2.8)

where ∂CV represents boundary of the domain and −→n is the outward unit
normal to the boundary.

In general, after writing governing equation in differential notation it be-
comes valid for every point in the computational domain. Moreover, if we
work on the differential form, we would obtain an FDM problem that can be
solved if we take into account CV of infinitesimally small lateral size. How-
ever, as presented in section 2.1, FDM is computationally very expensive be-
cause it would require a large number of CVs with very small lateral size in
order to obtain exact results. It would be desirable to increase the control
volumes to larger volumes and that is exactly what is being done in FVM.
The reason the FVM allows work with a larger CV is that it does not approx-
imate the changes of the dependent variable along the control volume, but
performs a conservation of the dependent variable for each CV. This allows
the calculation of the average value for the dependent variable within the
cell after which the CV is replaced by one value. It is obvious that if we take
a CV of larger dimensions, the more “averaged” solution will become. For
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example, finer features of the solution such as spikes in concentration will
not be visible anymore because they are blurred by the averaging process.
Because of that averaging process, FVM is surprisingly stable against large
changes and discontinuities in the dependent variable. However these tend
to be problematic for FDM because at discontinuities a function usually has
no derivative, so FDM in these locations cannot approximate values.

FIGURE 2.3: Cells used in FVM. a) A two-dimensional compu-
tational domain showing the typical quadrangles. At locations
where large changes in the dependent variables are expected,
the resolution is higher. b) A three-dimensional uneven hex-
aeder with the unit normal vectors facing the respective neigh-

boring cell.

The most important implication for the volume discretization of our com-
putational domain, because FVM requires the dependent variable to be in
conservative form, is the fact that the discreet volumes must remain fixed in
space. These volumes are referred as cells in contrast to the term “elements”,
which is the term used in finite element method. In two-dimensional do-
main, cells are quadrangles (not not necessarily squares; see Figure 2.3a), and
in three-dimensional space they are six-face hexaeder (see Figure 2.3b). These
cells i.e., shapes are adapted to the discretization of the volume and should
be designed in such manner that they allow a good resolution of the compu-
tational domain. This is important especially in areas which are expected to
show large changes of the dependent variables.

Another important point to consider is the fact that the shape of the cells
can be adapted to suit the geometry of the environment. This is in contrast
to FDM, which usually requires the control volumes to be equally shaped
[53]. Furthermore, the most attractive feature is that the resulting solution
implies that the integral conservation of quantities such as mass, momentum,
and energy is exactly satisfied over any group of used control volumes (lo-
cal conservation) and, of course, over the whole calculation domain (global
conservation). This property is valid for any number of grid points [10].
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2.3 Finite element method

Third method is by far one of the most commonly used method in numerical
analysis. Finite element method (FEM) was originally developed for solving
problems in solid-state mechanics, but it has since found wide application in
all areas of computational physics and engineering, as well as in computa-
tional fluid dynamics (CFD). The main difference compared to the previous
two methods (FDM and FVM) is that FEM is governed by the principle of
minimization of energy i.e., it uses variational formulation of the problem.
In other words, when a particular boundary condition (like force or displace-
ment) is applied to a body, leading to a several configurations for that body,
only that configuration where the total energy is minimum is the one that is
achieved.

The basic concept underlying the FEM is relatively simple. It can be
thought of as splitting the computational domain into very small but finite-
sized elements of geometrically simple shapes (see Figure 2.4). The word “fi-
nite” is used to describe the limited, or finite, number of degrees of freedom
used to model the behaviour of each element. The elements are assumed
to be connected to one another, but only at interconnected joints, known as
nodes. It is important to note that the elements are small regions, not sep-
arate entities like bricks, and there are no cracks or surfaces between them.
The next step is to solve system of equations, mathematically represented
by governing PDEs that describe the physics of the problem, and formulate
these equations for each finite-sized element. This is solved by approximat-
ing the fields within each element as a simple function with a finite number of
degrees of freedom (DOF). By stitching the individual solutions i.e., the con-
tribution from all elements are assembled and a large sparse matrix equation
system is solved, a global solution can be obtained.

FIGURE 2.4: Hat-function on a triangulation.
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The first step of FEM is the discretization i.e., the process of represent-
ing a component as an assemblage of finite elements of the computational
domain. In FEM the complete set, or assemblage of elements, is usually re-
ferred to as the mesh and the support points of the solution are referred to
as nodes. Moreover, because the two-dimensional FEM prefers triangles (see
Figure 2.4) and the tree-dimensional FEM prefers tetrahedra as the smallest
unit in the mesh for the most applications, since they can be adapted more
easily to complicated boundaries, this procedure is also called triangulation.
In general, the choice of nodes should match the complexity of the computa-
tional domain in a sense that the curvatures of the domain are approximated
as closely as possible. Furthermore, regions where the expected solution will
have steeper gradients i.e, more localized solution should be more finely re-
solved than regions where small changes are expected.

Another important property of FEM is that it uses linear combination
of basis (shape) functions for both interpolation and differentiation during
the discretization process. Because of that, the final solution is uniquely de-
fined throughout the whole computational domain, unlike in FDM and FVM
where the solution is not uniquely defined throughout the domain, except for
discrete nodal (grid) points. The most widely used basis functions among the
FEM community are Lagrangian polynomials. The same functions that are
commonly used to construct test (weighted) functions are also used for ge-
ometry mapping through the isoparametric concept. In general, solution ũ
in FEM is represented by linear combination of Lagrangian basis functions in
form

ũ =
N

∑
j=1

αj ϕj (2.9)

where αj are unknown coefficients and ϕj are basis functions. In case of mul-
tidimensional basis functions they are simply constructed using the tensor
product of one-dimensional basis functions.

2.4 Collocation method

The forth method that will be presented is collocation method. It is used for
solving integral and differential equations in which the approximate solution
is determined from the condition that the equation is satisfied at certain given
points (collocation points). It belongs to one of the two special cases of the
method of weighted residuals, the second one is Galerkin method.

Method of weighted residual is based on finding undetermined coeffi-
cients by minimizing residual while approximating the desired function u.
The desired function u is replaced by a finite series approximation

u ≈ ũ =
N

∑
j=1

αj ϕj (2.10)

where the set of functions ϕj, j = 1, 2, ..., N can be defined over both the time
and space domain, and αj, j = 1, 2, ..., N are unknown i.e., undetermined
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coefficients. In the FEM, the functions ϕj are selected to be polynomials that
satisfy certain boundary conditions set by the problem, and are variously
denoted, depending upon the area in which the method is applied, as shape
functions, basis functions or interpolation functions.

After substituting the assumed solution ũ into the PDE of the form

Lu− f = 0 (2.11)

where f is a known function, and L denotes differential operator involving
spatial derivative of u, results in

Lũ− f = R (2.12)

where R is a measure of error commonly referred to as the residual. Since the
assumed solution is only approximate, in general it does not satisfy the dif-
ferential equation that results in an error or what is usually called “residual”.
The residual is then made to vanish in some average sense over the entire
solution domain to produce a system of algebraic equations. The objective
is to find the unknown coefficients αj such that residual R is minimized. A
straightforward scheme would be to set the integral of residual to zero. But
before that, we must introduce weight functions wi, i = 1, 2, ..., N so that in-
tegral ∫

D

R(x)wi(x)dD = 0, i = 1, 2, ..., N (2.13)

could be solved over the domain D for the N unknown coefficients. Equation
(2.13) is the general equation describing the method of weighted residual.
This paved the way for a multitude of schemes that emerged from this one
expression through the definition of the weighting functions wi(x). Three
schemes that are most commonly encountered in engineering practice are the
Galerkin, subdomain and collocation. The Galerkin method uses the weight-
ing functions to be the same as the basis functions, as defined in (2.10). In the
subdomain method, the weighting function is set to be unity in the subdo-
main Di and zero elsewhere, i.e.,

wi(x) =

{
1 x ∈ Ωi

0 x 6∈ Ωi
, Ωi ∈ Ω. (2.14)

However, the collocation method is the simplest to implement. Here, the
weighting function wi(x) is chosen to be the Dirac delta. The Dirac delta
function belongs to the class of generalized functions. It can be set in differ-
ent ways, and the simplest and physically justified way is to interpret Dirac
function as an impulse function.

Figure 2.5 shows the impulse function Ia, which has the property of be-
ing intense on the interval [−a, a] with an intensity value of 1

2a , and outside
the interval it is equal to zero. Moreover, the value of the integral can be
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FIGURE 2.5: Impulse function

calculated as
∞∫
−∞

Ia(x)dx = 1 (2.15)

Dirac delta function is special case of impulse function,

δ(x) = lim
a→0

Ia(x) (2.16)

with properties,

δ(x) =

{
0 x 6= 0
∞ x = 0

(2.17)

∞∫
−∞

δ(x)dx = 1 (2.18)

and a particularly important property

∞∫
−∞

f (x)δ(x− xi)dx = f (xi) (2.19)

Following this it can be concluded that the collocation method corresponds
to the choice of the weighting functions as Dirac functions at the collocation
points

wi = δi = δ(x− xi) (2.20)

Collocation method requires no integration in the numerical procedure
and generates the N equations required to evaluate the undetermined un-
known coefficients αj. As might be expected, the accuracy of this scheme
depends heavily on the location of the collocation points.
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2.5 Other methods

Previously mentioned methods are by far most used numerical methods with
strong mathematical background and a wide range of applications in engi-
neering problems.

However, of the aforementioned methods, FEM and FVM can be thought
as the most popular and versatile discretization techniques. Methods such
as FDM, discrete element method (DEM), boundary element method (BEM)
which together with various meshfree, collocation and other hybrid ap-
proaches are practical only for limited types of problems. There are various
other methods such as the spectral methods, belongs to the variational meth-
ods, that are especially adapted to the approximation of smooth solutions but
are limited to simple geometries and methods using wavelets basis.

A DEM, also called a distinct element method, is an explicit numerical
model which approximates the mechanical behavior of an assembly of arbi-
trary shaped particles. Simulation of millions of particles on a single proces-
sor became possible due to the advances in computing power and numerical
algorithms for nearest neighbor. Because of that DEM is becoming widely
accepted as effective method for solving problems in granular flows, rock
mechanics, discontinuous materials (see [54]). One of the main problem of
the DEM is that it is relatively computationally intensive, which limits either
the number of particles or the length of a simulation. As such, the DEM has
become accepted and widely used to model the mechanical behaviour and
flow of particulate geomaterials.

Idea behind the BEM is that we can approximate the solution of the PDE
by looking at the solution to the PDE on the boundary and then use that infor-
mation to find the solution inside the computational domain. In other words,
the approximate solution obtained by BEM of the PDE is an exact solution of
the differential equation in the domain and is parametrized by a finite set
of parameters living on the boundary. In order to develop the boundary ele-
ment method however, it is necessary first to formulate an equivalent bound-
ary integral equation to the governing equation [55]. It is very useful when
domains are very large where for example a FEM approximation would have
too many elements to be practical. There are several advantages but also dis-
advantages of using BEM over other numerical methods like FEM or FDM.
Only the boundary of the domain needs to be discretized, especially in two
dimensions where the boundary is just a curve. The solution in the inside
part of the computational domain is approximated with a rather high conver-
gence rate. The physically relevant data, in some applications, are given by
the boundary values of the solution or its derivatives and not by the solution
in the interior of the domain. However, boundary integral equations require
the explicit knowledge of a fundamental solutions of the differential equa-
tion which is not always available, only for linear PDE with constant or some
specifically variable coefficients. Furthermore, if the boundary is not smooth
but has corner and edges, or if the boundary conditions are discontinuous,
e.g. in mixed boundary value problems, the solutions of the boundary value
problem will have singularities at the boundary.
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Chapter 3

Spline basis functions

This chapter provides the mathematical background for two representative
members of spline functions used in this work. The chapter starts with de-
scription of B-splines and NURBS followed by a description of up and Fup
basis functions. Here, the procedure using the convolution theorem is pre-
sented for construction of the Fup functions that clearly demonstrates their
close relationship to B-splines.

3.1 B-spline

Piecewise polynomial approximations are fundamental to many applica-
tions, but it is not straightforward to join the polynomial segments smoothly
while keeping local flexibility. However, B-spline basis functions handle the
smoothness constraints in a very elegant fashion and provide the base with
great numerical properties.

The B-spline basis functions parametric space is local to “patches” rather
than elements. In one dimensional domain, a knot vector is a set of non-
decreasing real numbers representing coordinates in the parametric space of
the curve

Ξ =
{

ξ1, ξ2, ..., ξn+p+1
}

(3.1)

where ξi is the i-th knot, i is the knot index, i = 1, 2, ..., n+ p+ 1, p is the poly-
nomial order of the B-spline, and n is the number of basis functions which
comprise the B-spline. The interval

[
ξ1, ξn+p+1

]
is called a patch. If knots

are equally-spaced in the parametric space, they are said to be uniform, and
non-uniform otherwise. More than one knot can be located at the same coor-
dinate in the parametric space, and are referred to as repeated knots. A knot
vector is said to be open if its first and last knots appear p + 1 times.

The simplest example of an algebraic B-spline is the B-spline of the zero
order B0 (ξ):

B0(ξ) =

{
1 ξ ∈ [−1/2, 1/2]
0 elsewhere

(3.2)

whose Fourier transform (FT) can be obtained in the following manner:

f0(t) =
+∞∫
−∞

B0 (ξ) · eitξ dξ =

+1/2∫
−1/2

1 · cos (t · ξ) dt =
sin (t/2)

t/2
(3.3)
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Since B0(ξ) (in the form (3.2)) has discontinuities in the points ξ = ±1/2,
for practical application it can be expressed as a continuous function by the

inverse FT. Applying the integral operator 1
2π

∞∫
−∞

e−itξdt on the right-hand

side of the expression (3.3), FT is transformed into the function itself, i.e. into
algebraic spline B0(ξ):

B0(ξ) =
1

2π

∞∫
−∞

sin (t/2)
t/2

· e−itξdt (3.4)

Considering uniform distribution of the knots, B-splines of the n-th order
according to the law - ξk = k− (n + 1) /2, k = 0, 1, ..., n + 1, can be presented
as:

Bn(ξ) =
1
n!

n+1

∑
k=0

(−1)k · Ck
n+1 ·

(
ξ +

n + 1
2
− k
)n

+

(3.5)

where Ck
n are binomial coefficients:

Ck
n =

(
n
k

)
=

(n)!
(n− k)! · k!

(3.6)

For example, B-splines up to the second order can be presented according
to (3.5) as follows:

B0 (ξ) = (ξ + 1/2)0
+ − (ξ − 1/2)0

+

B1 (ξ) = (ξ + 1)1
+ − 2 (ξ)1

+ + (ξ − 1)1
+

B2 (ξ) =
[
(2ξ + 3)2

+ − 3 (2ξ + 1)2
+ + 3(2ξ − 1)2

+ − (2ξ − 3)2
+

]
/8

(3.7)

Figure 3.1 shows that the compact support of Bn (ξ) consists of (n + 2)
knots and (n + 1) unit characteristic intervals. Moreover, Bn (ξ) is presented
by the local polynomial of the n-th order on each interval [ξk, ξk+1] . For in-
stance, B2 (ξ) has four knots and three characteristic intervals. Furthermore,
by increasing the B-spline order, the length of its compact support also in-
creases, and when n → ∞, the length goes to infinity. The coordinate ξT is
called the vertex of the basis function (point with maximum function value)
and serves as the origin for the shifting of the basis functions along the ξ
axis by the length of the characteristic interval. Figure 3.2 presents the cubic
B-spline B3 (ξ) with the first three derivatives.
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FIGURE 3.1: B-splines: Bn (ξ) , n = 0, 1, 2, 3.

Figures 3.1 - 3.3 presents the connection between B-splines and their
derivatives. The first derivative of B3 (ξ) can be presented as linear com-
bination of contracted and shifted B2 (ξ). Furthermore, the second deriva-
tive of B3 (ξ) can be presented as a linear combination of contracted and
shifted B1 (ξ), and so on. Finally, each i-th derivative of Bn (ξ) is a linear
combination of the contracted and shifted Bn−i (ξ).
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FIGURE 3.2: B3 (ξ) with its first three derivatives.

Following the mentioned properties, Bn (ξ) can be presented by convolu-
tion in the following form:

Bn (ξ) =

∞∫
−∞

Bn−1 (ξ − t) B0 (t) dt (3.8)

or:
Bn(ξ) = Bn−1(ξ) ∗ B0(ξ) = B0(ξ) ∗ ... ∗ B0(ξ)︸ ︷︷ ︸

(n+1) times

(3.9)

where n is the order of the B-spline and B0 (ξ) is given by (3.2). The convolu-
tion theorem states that the Fourier transform (FT) of Bn (ξ) can be expressed
as a product of (n+1) particular FT’s of B0 (ξ) according to (3.9):

fn(t) =
(

sint/2
t/2

)n+1

(3.10)
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so the inverse FT of Bn(ξ) analogous to the expression 3.4 is defined by:

Bn(ξ) =
1

2π

∞∫
−∞

(
sin (t/2)

t/2

)n+1

· e−itξdt (3.11)

Equation (3.9) implies that the support of Bn (ξ) is the union of the (n+ 1)
characteristic intervals ∆ξ. Figure 3.3 shows generation of B-splines accord-
ing to (3.9) and the convolution theorem.

FIGURE 3.3: Generation of B2(ξ) using the convolution theo-
rem.

Furthermore, this is not the only way to express B-splines. Having in
mind knot vector, defined in the beginning of this section, B-spline basis func-
tions are defined recursively (see Cottrell et al. [17]) starting with piecewise
constants (n = 0):

Bi,0(ξ) =

{
1 ξi ≤ ξ < ξi+1

0 elsewhere
(3.12)

and for n > 0, B-splines are defined by

Bi,n(ξ) =
ξ − ξi

ξi+n − ξi
Bi,n−1(ξ) +

ξi+n+1 − ξ

ξi+n+1 − ξi+1
Bi+1,n−1(ξ). (3.13)

Figure 3.4 presents B-spline basis functions for n = 0, 1, 2 on a uniform
knot vector. An interesting fact is that standard piecewise constant and linear
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finite element functions are the same for n = 0, 1. However, for higher-orders
of B-spline basis functions they differ from their FEA counterparts.

FIGURE 3.4: Basis functions of order 0, 1, and 2 for uniform knot
vector Ξ = {0, 1, 2, ...}.

Finally, we can summarize the properties of the B-splines basis functions
as follows:

1. Bn-spline is positive on n + 1 characteristic intervals and vanishes out-
side this interval i.e., B-splines have compact support where they have
strictly positive non-zero values; elsewhere, they are zero, implying lo-
calized approximation properties.

2. Bn-spline is (n− 1)-times continuously differentiable with discontinu-
ities of the n-th derivative.

3. A linear combination of shifted Bn-splines by a characteristic interval
describes algebraic polynomials up to the n-th order.

4. A linear combination of m shifted B-splines by a characteristic interval
describes a unit constant function (“partition of unity”), that is

m

∑
i=1

Bi,n(ξ) = 1 (3.14)

5. Bn-splines can be presented by a linear combination of the shifted B-
splines of the same order but using two-times-smaller support. This
implies that B-splines support multiresolution analysis and efficient
adaptive numerical procedures (e.g., [21]–[25], [31]–[34]). This can be
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highlighted as the most interesting, since a hierarchical Fup basis func-
tion (following the properties of Fup basis functions) will be developed
based on this property.

3.2 NURBS

Just like in classical finite element analysis (FEA) B-spline curves in Rd are
constructed by taking a linear combination of B-spline basis functions. Many
properties of B-spline curves follow directly from the properties of their basis
functions. Here, the basis functions vector-valued coefficients are referred
to as control points. These control points are somewhat identical to nodal
coordinates in FEA by being the coefficients of the basis functions but the
non-interpolatory nature of the base does not lead to a concrete interpretation
of the values of the control points. Piecewise-polynomial B-spline curve can
be described using m basis functions Bi,n,i = 1, 2, ..., m, and corresponding
control points Pi ∈ Rd, i = 1, 2, ..., m by

C(ξ) =
m

∑
i=1

Bi,n(ξ)Pi (3.15)

where index i in Pi is not a reference to one of its d components, rather serves
to identify the control point. Hence, a B-spline curve in essence is a mapping
from a one dimensional parametric space to physical space. Control polygon
is given by piecewise linear interpolation of the control points. Interesting
property of the B-splines is the ability to intuitively change their shape by
adjusting the control points. This power is used within Non-Uniform Ratio-
nal B-splines (NURBS), by constructing a basis for the NURBS space from
knot vectors and to build curves, surfaces and solids from linear combina-
tions of basis functions and control points. In that view, everything that has
been defined i.e., that applies to B-splines, also applies to NURBS. NURBS
can be thought as extension of B-splines by associating a weight with each
control point. For designers, NURBS are interesting for obtaining more con-
trol of the represented curve without increasing the number of control points
or increasing the degree. Moreover, it also represent exactly some curves
with conic sections, such as circles and ellipses.

NURBS are mathematical representations of 3-D geometry that can ac-
curately describe any shape from simple 2-D line, arc, or curve to the most
complex 3-D organic free-form surface or solid. Because of their general-
ity, flexibility, accuracy, i.e., excellent properties NURBS models are the most
popular representation method in CAD.
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FIGURE 3.5: NURBS geometries. (a) NURBS curve; (b) NURBS
surface.

NURBS curves and surfaces (see Figure 3.5) are generalizations of both
B-splines and Bézier curves and surfaces, the primary difference being the
weighting of the control points (red squares in Figure 3.5), which makes
NURBS curves rational.

NURBS basis is given by

Rn
i (ξ) =

Bi,n(ξ)wi

W(ξ)
=

Bi,n(ξ)wi
m
∑

j=1
Bj,n(ξ)wj

(3.16)

where W(ξ) is weighting function, Bi,n(ξ) is the standard B-spline basis func-
tion and wi is referred to as the weight factor. Using (3.16) in conjuction with
the NURBS curve control points

(Pi)j =

(
Pw

i
)

j

wi
, j = 1, ..., d (3.17)

leads to an equation for a NURBS curve,

C(ξ) =
m

∑
i=1

Rn
i (ξ)Pi (3.18)

where (Pi)j is the jth component of the vector Bi. Note that (3.18) is identical
form to that for B-splines.

Weights play an important role in defining the basis, but they are divorced
from any explicit geometric interpretation in this setting, and we are free to
choose control points independently from their associated weights. Also note
that if the weights are all equal, then Rn

i (ξ) = Bi,n(ξ) and the curve is again
a polynomial. Thus, B-splines are a special case of NURBS [17].
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Some of the great qualities that makes NURBS ideal choice for computer-
aided modeling are as follows:

1. have a well-known and a precise definition (one common mathematical
form) that can accurately represent both standard geometric objects like
lines, arcs, ellipses, etc., and free-form geometry like car bodies and
human bodies.

2. the amount of information required for a NURBS representation of a
piece of geometry is much smaller than the amount of information re-
quired by simpler methods

3. can be evaluated reasonably quickly by numerically accurate and stable
algorithms.

3.3 Atomic basis functions

Fup basis functions belong to the class of atomic functions (see [37],[41]) and
span vector space of algebraic polynomials, while their properties are closely
related to the B-splines, as will be explained in the sequel.

Atomic basis functions (ABF) are infinitely derivative solutions of func-
tionally differential equations in the form

Ly(x) = λ
M

∑
k=1

Cky(ax− bk) (3.19)

where L is a linear differential operator with constant coefficients, λ is a non-
zero scalar value, Ck are coefficients of the solutions, a > 0 is the support
length parameter of the finite function, bk are the coefficients that determine
the shifts of the finite basis functions. The type of the finite function from
the class of atomic basis functions is determined by the choice of the opera-
tor L in (3.19). Thus, we distinguish atomic basis functions of the algebraic,
exponential and trigonometric type.

One way to obtain up(ξ) function, the simplest and basic atomic func-
tion, is by contracting B0(ξ) (see Eq. 3.2) to half the length of the compact
support (h0/2) and thus obtaining another member of the convolution, then
contracting it again to half the length of the compact support (h0/4) obtain-
ing the third member of the convolution and so on, i.e. following convolution
procedure:

up (ξ) =B0 (ξ) ∗B0 (2ξ) ∗ · · · ∗B0

(
2kξ
)
∗ · · · ∗B0 (2∞ξ) (3.20)

Applying Paley-Wiener theorem (see [56]) in form
∫ +∞
−∞ B0(2kξ)dξ = 1, it

follows that the ordinates of each subsequent member in (3.20) are doubled:

B0(2kξ) =

{
2k ξ ∈ [−2−k−1, 2−k−1]

0 elsewhere
, k = 0, 1, ..., ∞. (3.21)
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The function up (ξ) is obtained by an infinite number of convolutions of the
contracted B0 (ξ) with compact support 2−k and vertex value 2k (see Eq.
3.20), as shown in Figure 3.6. According to (3.20), the compact support of
up (ξ) is the union of an infinite number of finite intervals. However, its
compact support is finite:

hup=
∞

∑
k=0

1
2k= 2 → supp up (ξ) = [−1, 1] (3.22)

Rvachev and Rvachev [37] proved that the length of the compact sup-
port (3.22) can be presented as a distance metric of the set of binary-rational
points 2−k, while all other points as ±1/3, ±4/7, ±

√
2/2, ±π/8 contain

zero metric length. The convolution procedure (3.20) causes up(ξ) to contain
all polynomial orders by parts of its compact support.

Fourier transform of the basic atomic function up (ξ) corresponds to the
product of an infinite number of Fourier transformations of the convolution
factor

F0 (t) =
∞

∏
j=1

sin(t/2j)

t/2j . (3.23)

Due to its infinite number of continuous and non-zero derivatives, func-
tion up(ξ) can be regarded as a perfect spline. However, it is still not an an-
alytic function at any point of its support. Moreover, its finiteness is higher
than that of B-splines. The mother atomic function up (ξ) retains the good lo-
calized property of B-splines but also possesses the property of universality,
as trigonometric or algebraic polynomials. Universality means that adding
new basis functions in some approximation can only improve or at least not
change the previous approximation which means that the new approxima-
tion contains old approximation as a vector subspace.

The values of up(ξ) and its derivatives can be found exactly in the form of
rational numbers in the binary-rational points. Those binary-rational points
are defined as:

ξbr= −1+k · 2−m, m∈N, k= 1, . . . ,2m+1. (3.24)

At all other points of the compact support calculation of up (ξ) can be done
only approximately, but up to the computer accuracy. Even though the cal-
culation of up (ξ) can use FT (3.23), Gotovac and Kozulić [41] found a more
appropriate expression for the calculation of up(ξ) values in binary-rational
points:

up(ξbr) =
2−m(m+1)/2

m!

k

∑
j=1

δj

[m/2]

∑
`=0

C2`
m · (2(k− j) + 1)m−2` · a2` (3.25)

where C2`
m are binomial coefficients, δj are coefficients that have sign accord-

ing to the following recursive formulas:

δ2k−1 = δk, δ2k = −δk, k ∈ N, δ1 = 1 (3.26)
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and expression [m/2] represents the maximum integer of the fraction within
the brackets, and a2` are even moments of up(ξ) defined by the following
recursive formulas:

a2k =
(2k)!

22k − 1

k

∑
`=1

a2k−2`

(2k− 2`)!(2`+ 1)!
, k ∈ N ; a0 = 1 (3.27)

FIGURE 3.6: Generation of the function up(ξ) using the convo-
lution theorem (see Eq. 3.20).

For the calculation of up(ξ) values at arbitrary points, Gotovac and
Kozulić [41] suggested a special series based on Taylor series of the up(ξ)
function at the binary-rational points ξbr (because it is then a polynomial of
the n-th order). Values of the even function up(ξ) in arbitrary point ξ∈ [0, 1]
can be presented as follows:

up (ξ) = 1−up(ξ−1) = 1−
∞

∑
k=1

(−1)1+p1+···+pk pk

k

∑
j=0

Cjk·∆k
j (3.28)
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where the coefficients Cjk are rational numbers containing values of up(ξ) at
the binary-rational points ξk = −1 + 1/2m [41]:

Cjk =
1
j!

2j(j+1)/2up(−1 + 2−(k−j)) ; j = 0 , 1 , . . . , k ; k = 1 , 2 , . . . , ∞

(3.29)
Factor ∆k in (3.28) presents the difference between the real value of co-

ordinate ξ and its binary presentation with k bytes, where p1 . . . pk are the
digits 0 or 1:

∆k = ξ−
k

∑
i=1

pi·
1
2i (3.30)

This means that the obtained accuracy of the coordinate ξ reflects on
the accuracy of up(ξ) values at arbitrary points, which in turn depends
on the computer accuracy. For a chosen m, the calculation error of up(ξ)
values at the arbitrary points ξ (equal to the residual of series (3.28) when
k= 1 , . . . , m), does not exceed the value of up (−1+2−m). In this work, 216

binary-rational points (m=16) were used, which means that the calculation
error is of the order of up

(
−1+2−16)=0.117·10−51, which is significantly

smaller than the computer accuracy. In practice, for all numerical calcula-
tions, it is sufficient to use (3.25) and 216 binary-rational points (m=16) be-
cause its density enables interpolation of the value at any arbitrary point up
to the computer accuracy.

For an exact description of polynomials up to the n-th order on the inter-
val ∆ξn = 2−n, it is necessary to use 2n+1 basis functions obtained by shifting
up(ξ) for ∆ξn. Such a relatively large number of basis functions implies poor
approximation properties of up (ξ) . This is the main reason why application
of up(ξ) in numerical analysis for practical purposes is quite limited.

3.4 Fup basis functions

Fupn(ξ) are another class of atomic basis functions, also belonging to the
polynomial types of basis functions, which require only (n+2) basis functions
to exactly describe polynomials up to the n-th order on interval ∆ξn = 2−n.
For instance, for the development of a 4-th order polynomial, only 6 or (n+2)
Fup4(ξ) are needed in comparison to 32 up(ξ) basis functions. The compact
support of Fupn(ξ) contains n+2 characteristic intervals ∆ξn = 2−n:

supp Fupn(ξ) =
[
− (n+2) ·2−n−1, (n+2)·2−n−1

]
(3.31)

For n = 0, the following holds:

Fup0(ξ) = up(ξ) (3.32)

Function Fupn(ξ) can be defined as finite solution of differentially func-
tional equations, in a similar way as a function up(ξ). By analogous proce-
dure as for function up(ξ), general expression for the Fourier transform Fn(t)
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of the function Fupn(ξ) is obtained by

Fn (t) =
(

sin(t/2−n−1)

t/2−n−1

) ∞

∏
j=n+2

sin(t/2j)

t/2j . (3.33)

Furthermore, function Fupn(ξ) can be obtained by a convolution proce-
dure using the contracted Bn and up basis function:

Fupn(ξ) =Bn(2n ξ)∗up (2n+1 ξ) (3.34)

This means that Fupn(ξ) is closely related to Bn (ξ) and that they together
share all the mentioned properties. However, Fupn(ξ) has better approxi-
mation properties than Bn (ξ) due to the convolution with the up function
containing all orders of polynomials by parts and infinite continuity. More-
over, they share the same convergence properties because it is directly linked
by the polynomial order which can be exactly described by linear combina-
tion of these functions. Additionally, the Fupn(ξ) has better approximation
properties which are paid by one more characteristic interval for the same
n-th order of basis functions. Equation (3.34) is not numerically favorable for
calculating the value of the function Fupn(ξ).

Atomic basis functions have a “deeper” mathematical background, and
they are generally solutions of differential-functional equations, which for
Fupn (ξ) take the following form:

Fup
′
n (ξ) = 2

n+2

∑
k=0

(
Ck

n − Ck−2
n

)
·Fupn

(
2ξ − k

2n +
n + 2
2n+1

)
(3.35)

where Ck
n are binomial coefficients defined as

Ck
n =

(
n
k

)
=

(n)!
(n− k)! · k!

(3.36)

The relationship between Fupn (ξ) and the shifted Fupn+1 (ξ) can be pre-
sented in the general form:

Fupn(ξ)=
1

2n+1

n+1

∑
k=0

Ck
n+1·Fupn+1

(
ξ − k

2n+1 +
n + 1
2n+2

)
(3.37)

Equations (3.35-3.37) present the atomic structure of these basis functions
because a function and its derivatives are decomposed by a linear combina-
tion of these same functions (Rvachev and Rvachev [37]). Fupn(ξ) can be
calculated by a linear combination of up(ξ) mutually shifted by the charac-
teristic interval 2−n:

Fupn(ξ) =
∞

∑
k=0

Ck(n)·up
(

ξ − 1− k
2n +

n + 2
2n+1

)
(3.38)
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The zero coefficient in (3.38) is:

C0(n) =2C2
n+1 = 2n(n+1)/2 (3.39)

FIGURE 3.7: Function Fup2(ξ) with its first three derivatives.

Other coefficients are calculated in the form Ck(n) = C0 (n) ·C
′
k(n), where

the coefficients C
′
k(n) are obtained using the following recursive formulas:

C
′
0 (n) = 1

C
′
k(n) = (−1)kCk

n+1 −
min { k ; 2n+1−1}

∑
j=1

C
′
k−j (n) · δj+1

(3.40)

For example, Figure 3.8 shows function Fup4(ξ) and shifted up(ξ) func-
tions from which a linear combination yields Fup4(ξ) following (3.38). The
compact support for function Fup4(ξ) according to (3.31) is

[
− 3

16 , 3
16

]
, with

zero coefficient C0 = 2C2
5 = 1024 and the rest of the coefficients (C

′
0) are

calculated using (3.40).
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FIGURE 3.8: Function Fup4(ξ) as a linear combination of the
shifted up(ξ) functions.
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Derivatives of Fupn (ξ) are calculated from (3.35) and (3.38). Figure 3.7
presents Fup2 (ξ) with its first three derivatives, which has the same num-
ber of characteristic intervals as B3 (ξ). However, the third derivative has no
discontinuities due to the enhanced continuity of Fup2 (ξ).

In the numerical modeling of boundary value problems, there is a need
to modify boundary basis functions in order to keep the same approxi-
mation properties as inside the domain. The concept of boundary basis
functions refers to the linear combination of basis functions whose com-
pact supports are at least partially located inside the domain. For sim-
pler notation, modified boundary Fupn basis functions are designated as
ϕn,j, j = −[(n + 1)/2], ..., [n/2] on the left domain boundary ξA, and j =
N − [n/2], ..., N + [(n + 1)/2] on the right domain boundary ξB (N is the
number of characteristic intervals ∆ξn).

Modified boundary basis functions ϕn,j are presented in the form of a
linear combination of the original Fupn basis functions, which are hereinafter
referred to as yn,i(x), i = −[(n + 1)/2], ..., j on the left boundary and i =
j, ..., N + [(n + 1)/2] on the right boundary.

The boundary basis functions ϕn,j on the left domain boundary are mod-
ified so that i-th derivation is satisfied in a manner

ϕ
(i)
n,j (ξA) 6= 0 f or j + [(n + 1)/2] 6 i 6 n

ϕ
(i)
n,j (ξA) = 0 otherwise; i ∈N

(3.41)

Modification of the right boundary basis functions are achieved by trans-
lating and mirroring the left modified boundary basis functions.

In the vector space of mutually displaced Fupn basis functions, it is nec-
essary to modify the (n + 1) basis functions on the left and right boundary
domain, whose compact supports are partially outside of the domain (Figure
3.9).
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FIGURE 3.9: a) Linear combination of mutually displaced
y2,i(ξ) basis functions and b) Modified boundary ϕ2,j(ξ) basis

functions on the left and right boundary domain.

In Figure 3.9a a linear combination of basis functions y2,i(ξ) is shown,
while Figure 3.9b shows the modified boundary Fup2 basis functions at the
left and right boundaries of the domain. Modified boundary Fup2 basis func-
tions on the left boundary are defined as

ϕ2,−1 (ξ) =
36
5 y2,−1 (ξ)

ϕ2,0 (ξ) = −36
5 y2,−1 (ξ) +

18
13 y2,0 (ξ)

ϕ2,1 (ξ) = y2,−1 (ξ)− 5
13 y2,0 (ξ) + y2,1 (ξ)

(3.42)

while modified boundary Fup2 basis functions on the right boundary are
obtained by translating the left boundary basis functions for length L =
N · ∆ξ2 and their mirror symmetry around the right boundary, i.e. ϕ2,j(ξ) =
ϕ2,j(−ξ − L)

ϕ2,N−1 (ξ) = y2,N+1 (ξ)− 5
13 y2,N (ξ) + y2,N−1 (ξ)

ϕ2,N (ξ) = −36
5 y2,N−1 (ξ) +

18
13 y2,N (ξ)

ϕ2,N+1 (ξ) =
36
5 y2,N+1 (ξ)

(3.43)

Modified Fupn boundary basis functions of other orders are modified in
the same way as presented Fup2 (Figure 3.9), so that i-th derivation is sat-
isfied following (3.41). Figure 3.10 shows (n + 1) modified basis functions
with one in the middle (black curve) that is not modified because its whole
compact support is inside the domain.
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FIGURE 3.10: Modified n + 1 Fupn boundary functions on the
right and left boundary domain. (a) n=1; (b) n=2; (c) n=3; (d)

n=4; (e) n=5.
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Chapter 4

Isogeometric analysis (IGA)

This chapter serves as a short introduction to classical isogeometric analysis
(IGA), followed by a description of three different numerical formulations
(Galerkin, collocation and control volume) used for spatial discretization of a
simple steady-state advection-dispersion problem. Galerkin and collocation
IGA formulations are considered as a classical IGA formulations. The con-
cept of IGA is presented as a unified framework for a multiscale description
of the geometry and solution fields.

4.1 Introduction

Relatively recent ago, designers worked at drawing boards and designs were
drawn with pencils and then passed to stress analysis. Ever since computers
were introduced, times changed. Now designers generate CAD (Computed
Aided Design) files which must be translated into analysis-suitable geome-
tries, meshed and input to large-scale finite element analysis (FEA) codes.
This is not trivial and for complex engineering designs it is estimated to take
over 80% of the overall analysis time [14]. Design of sophisticated engineer-
ing systems is based on a wide range of simulation methods and compu-
tational analysis, such as fluid dynamics, structural mechanics, electromag-
netics, acoustics, heat transfer, etc. The integration of FEA and CAD has
proven to be a considerable problem and some fundamental changes have
taken place to fully integrate analysis processes and engineering design.

Obviously, the way to break down the barriers between engineering de-
sign and analysis is to reconstitute the whole process, while at the same time
maintaining compatibility with existing practice. The basic step is to focus
on one and only one geometric model, which can be used directly as an anal-
ysis model or from which geometrically precise analysis models can be built
automatically. This will require a change from classical FEA to an analy-
sis procedure based on CAD representations. This concept is introduced by
Hughes et al. [14] (see also Cottrell et al. [17]) and is referred to as Isogeomet-
ric analysis (IGA).

The main idea of IGA is to bridge the gap between finite element analysis
(FEA) to describe a numerical solution and a CAD system to describe geom-
etry using the same type of smooth and higher-order (spline) basis functions
for both systems. The core of IGA is the isoparametric concept, widely used
in classical FEM, where the basis functions used to approximate the solution
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fields are also used to describe the geometry. IGA turns this idea in a differ-
ent direction and selects the basis used to describe geometry in CAD systems
as a basis for numerical approximation of the unknown solution fields. The
main difference is that, in contrast to classical FEA, where the geometry is
only approximated, IGA allows an accurate representation of the geometry
in a CAD sense. Furthermore, in addition to clear advantages for describing
geometry, spline basis functions (hierarchical splines) allows for adaptive lo-
cal improvement of the solution.

4.2 Geometry description

There are a number of computational geometry spline candidates that may
be used in isogeometric analysis. The most widely used in engineering de-
sign are B-splines and NURBS. The greatest strengths of NURBS are that
they can exactly represent all conic sections, and therefore circles, cylinders,
spheres, etc., they are convenient for free-form surface modeling, and there
exist great number of numerically stable algorithms that generate NURBS
objects. Moreover, they posses useful mathematical properties such as Cn−1-
continuity for nth order NURBS, ability to be refined through knot insertion
and convex hull properties. Besides NURBS and B-splines, there are also
T-splines (see Sederberg et al. [15]). They extend NURBS to permit local re-
finement and coarsening, and are very robust in their ability to efficiently sew
together adjacent patches. Moreover, T-splines are used to generate analysis-
suitable models for arbitrary topological complexity [57], can be locally re-
fined [58] and are capable of significantly reducing the number of the super-
fluous control points.

It should be noted that in FEA there is one notion of a mesh and one no-
tion of an element, but also that one element has two representations, one in
the parent domain and one in physical space. Degrees of freedom of the ele-
ments are usually the values of the basis functions at the nodes, and elements
are usually defined by their nodal coordinates. Finite element basis func-
tions, often referred to as “interpolation functions” or “shape functions”, are
typically interpolatory and may take on positive and negative values. How-
ever, for example in NURBS, the basis functions are usually not interpolatory
and there are two notions of meshes, the control mesh and the physical mesh.
The control points (see Figure 4.1) define the control mesh and the control
mesh interpolates the control points. The control points enables the designer
to create a wide range of desired objects, for instance, in the aviation or car
industry. The control mesh consists of multilinear elements and does not
conform to the actual geometry. Instead, it can be described like a scaffold,
that controls the geometry. Control variables that defines the control mesh
are the degrees of freedom that are located at the control points (red circles
on the Figure 4.1). Just like the control elements may be degenerated to more
primitive shapes (triangles in 2D or tetrahedra in 3D), the control mesh can
also be distorted and even, to some extent, inverted, while at the same time
the physical geometry my still remain valid for enough smooth NURBS.
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The physical mesh, i.e., decomposition of the actual geometry, consists
of two types of elements, the patch and the knot span (see Figure 4.1). The
patch may be thought of as a macro-element or subdomain. While there are
multiple patches in FEM (one element one patch) in IGA most geometries, for
academic test cases, can be modeled with a single patch. Each patch has two
representations, one in physical space and one in a parent domain. Patches
in two-dimensional topologies are rectangles (see Figure 4.1), and in three
dimensions are a cuboid in the parent domain representation. Patches can be
decomposed into knot spans which are bounded by knots which are points,
lines and surfaces in 1D, 2D, and 3D topologies, respectively.

FIGURE 4.1: Schematic illustration of isogeometric analysis
(IGA): physical space with control points and control mesh, pa-
rameter space with spline basis functions and related parent el-

ements, knot vectors, and index space.

Figure 4.1 shows schematic illustration of IGA how one 2D subdomain or
patch is transformed from the parameter (virtual) space to the physical (real)
space using following spline representation

x(ξ, η) = ∑
j=1

xjφj(ξ, η); y(ξ, η) = ∑
j=1

yjφj(ξ, η) (4.1)

where xj and yj are the coordinates of the control points B(xj, yj) in the phys-
ical space, while ξ and η represents the coordinates in the parameter space.
However, the main part of (4.1) are spline basis functions φj which in classic
IGA are B-splines and NURBS. It is clear from (4.1) that IGA operates only
with basis functions in the virtual regular domain since transformations from
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the virtual to real, and vice versa are defined by the Jacobian

J =

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
=

N

∑
j=1

 ∂φj
∂ξ xj

∂φj
∂ξ yj

∂φj
∂η xj

∂φj
∂η yj

 (4.2)

and its inverse

J−1 =

[
∂ξ
∂x

∂η
∂x

∂ξ
∂y

∂η
∂y

]
=

1
detJ

[
∂y
∂η − ∂y

∂ξ

− ∂x
∂η

∂x
∂ξ

]
, (4.3)

as in classic FEM. However, the main difference is that IGA considers the
transformation of each patch, which can be thought of as a macro-element
or a subdomain, while the FEM performs transformations for each element
[17].

The numerical solution in the virtual domain is also described by inde-
pendent set of spline basis functions

u(ξ, η) = ∑
j=1

αj ϕj(ξ, η) (4.4)

It should be noted that number and order of the basis functions in the (4.1)
and (4.4) may not be the same.

4.3 Three IGA formulations

In the following, the discretization process will be presented by considering
a simple steady-state advection-dispersion equation (ADE) in the form:

∇ · (D∇u(x))−∇ · (vu(x)) = 0 in Ω (4.5)

with appropriate boundary conditions:

u(x) = uD on ΓD (4.6)

(D∇u(x)) · n = qN(x) on ΓN (4.7)

where u(x) represents the dependent variable, while the first (D) and second
(v) term in Equation (4.5) represent influence of the dispersive (diffusive) and
advective (convective) flux, respectively, which in general may be function
of time, space and/or an unknown solution. Domain boundaries under the
Dirichlet and Neumann boundary conditions are ΓD and ΓN, respectively,
and n is the outward normal vector.

Method of weighted residuals can be thought as a general approach for
deriving the different numerical formulations. The main idea is to integrate
differential equation (4.5) over the domain of interest and multiply it by a
finite number of weighting (test) functions wi(x):∫

Ω
∇ · (D∇u(x))wi(x)dΩ−

∫
Ω
∇ · (vu(x))wi(x)dΩ = 0 (4.8)
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where the number of test functions (wi) is generally the same as the number
of basis functions, and because of that the number of equations is equal to
the number of unknowns.

FIGURE 4.2: Discretization of 2D domain with three different
IGA formulations.

Two most used formulations in IGA [14], [17] are Galerkin and collocation
formulations using B-splines or NURBS as basis and test functions. However
in this work besides those two methods, new formulation control volume
within IGA (CV-IGA) will be introduced. Furthermore, Fup basis functions
and the CV formulation are used, and referring to this method as control vol-
ume isogeometric analysis (CV-IGA), first developed using only low order
Fup1 and uniform non-adaptive discretization in [52] and applied to mul-
tiphysics model of the flow in karst aquifers. The main idea of CV-IGA is
to utilize the powerful approximation and adaptive properties of Fup basis
functions for numerical solutions of engineering problems that arise in the
field of fluid mechanic with the conservation properties of the CV formula-
tion (as in control volume finite element method; [59]–[61]). The CV formula-
tion enables local and global conservation properties, with the computational
cost between Galerkin (high-cost) and collocation (low-cost) (see [49]). One
way to derive the three formulations, which will be presented in this paper,
is to use different weighting (test) functions.

4.3.1 Galerkin formulation (G-IGA)

By using the same functions to construct both the trial (basis) functions and
weight (test) functions spaces, the classical Galerkin formulation is obtained.
In G-IGA, the spline basis functions ϕi, usually B-splines or NURBS, used as
the weighting functions, are also used for the solution and geometry descrip-
tion. By setting wi(x) = ϕi(x) and substituting it into equation (4.8) gives∫

Ω
∇ · (D∇u(x))ϕi(x)dΩ−

∫
Ω
∇ · (vu(x))ϕi(x)dΩ = 0, (4.9)
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and by applying integration by parts and divergence theorem (Green-Gauss-
Ostrogradski theorem), the weak form of (4.9) is obtained:∫

Ω
(D∇u(x))∇ϕi(x)dΩ−

∫
Ω
(vu(x))∇ϕi(x)dΩ =∫

ΓD

(D∇u(x)− vu(x))nwi(x)dΓ +
∫

ΓN

qN ϕi(x)dΓ
(4.10)

Weak formulation (4.10) assumes that Neumann conditions can be directly
imposed. However, test functions need to be zero on Dirichlet boundary so
that Dirichlet boundary integral disappear at the right side in (4.10). In the
classical FEM, the Dirichlet boundary conditions are satisfied by imposing
solution values in the finite element nodes. It is possible because, classical
FEM uses Lagrangian basis functions which are collocated in finite element
nodes. Since in IGA multidimensional domains, higher-order spline basis
functions have no such Kronecker property on Dirichlet boundary, special
treatment of essential boundary conditions is needed.

By expressing solution u(x) as a linear combination of spline basis func-
tions (u(x) = αj ϕj(x)), the weak form (4.10) can be obtained in the final
discrete form. The maximum number of nonzero basis functions (ϕj) for a
given discretized equation is determined by the polynomial order (n) of the
basis functions. The main difference from the FEM is that the control points
are not necessarily located at the element corners (see Figure 4.2) and the fact
that the control variables, i.e. coefficients of the linear combination αj cannot
be interpreted as nodal values due to the non-interpolatory nature of spline
basis functions.

4.3.2 Collocation formulation (C-IGA)

The collocation approach is different from other two mentioned methods be-
cause it is carried by using the Dirac delta function (see Eq. (2.20)), produc-
ing: ∫

Ω
∇ · (D∇u(x))δ(x− xi)dΩ−

∫
Ω
∇ · (vu(x))δ(x− xi)dΩ = 0 (4.11)

Due to the properties of the Dirac delta function, demanding integration pro-
cedure is eliminated. Because of that, at each i-th internal collocation point
the governing PDE (4.5) is satisfied in the strong differential form:

∇ · (D∇u(xi))−∇ · (vu(xi)) = 0. (4.12)

By differentiating equation (4.12) and obtaining,

D∇2u(xi)− v∇u(xi) = 0 (4.13)

it is obvious that strong collocation formulation (4.11) requires at least C2

continuity of the basis functions, whereas the Galerkin form (4.10) required
only C1 continuity.
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Collocation greatest strength comes from the fact that it avoids costly nu-
merical integration and the fact that the number of nonzero elements is sig-
nificantly reduced compared with the Galerkin formulation. Because of that
C-IGA can be competitive with G-IGA in terms of computational cost for a
given accuracy, especially for higher-order spline basis functions, which is
proven by Schillinger et al. [62]. Another difference from Galerkin formula-
tion is that collocation formulation satisfies the boundary conditions in the
strong sense, i.e., both the Dirichlet and Neumann conditions are satisfied
exactly.

The choice of the collocation points in not an easy task. It is of the most
important components for the success of the collocation method. In recent
years, considerable progress has been made on this topic especially within
C-IGA and various sets of collocation points. Most notably being Greville
points (abscissae), knot maxima and Demko points. Because of their sim-
ple definition and stable procedure, the Greville points have been widely
adopted as the default choice (e.g., [62]).

In case of the B-splines of order n, the Greville points are defined to be
the mean location of n− 1 consecutive knots in the knot vector for each basis
spline function of order n [63]. Since Fup basis functions have one more char-
acteristic interval for the same order, the grid points of the Greville abscissae
calculated for the Bn correspond to the Greville abscissae grid points of the
Fupn−1. The Greville abscissa (Figure 4.2 - black circles) for the Fupn basis
functions can easily be computed from a knot vector Ξ = {ξ1, ξ2, ..., ξm+n+2}

ξ̂i =
1

n + 1
(ξi+1 + ... + ξi+n+1), i = 1, ..., m (4.14)

where n is the order of the basis functions, and m is the number of basis
functions.

4.3.3 Control volume formulation (CV-IGA)

The control volume formulation is performed by firstly dividing the domain
of interest by m control volumes (see Figure 4.2) (Ωi; i = 1, ..., m). CV formu-
lation [10] uses test functions defined in the following form:

wi(x) =

{
1 x ∈ Ωi

0 x 6∈ Ωi
, Ωi ∈ Ω. (4.15)

Substituting (4.15) in (4.8), the direct integral form of the governing equation
is recovered: ∫

Ωi

∇ · (D∇u(x))dΩ−
∫

Ωi

∇ · (vu(x))dΩ = 0 (4.16)

It should be noted that the integration is performed only over the i-th control
volume (CV) due to the properties of the test functions (4.15). The surface
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integrals at left side over the control volume are transformed into a line inte-
grals across Ωi boundaries Γi using Gauss’s theorem,∫

Γi

(
D∇u(x)

)
ndΓ−

∫
Γi

(
vu(x)

)
ndΓ = 0 (4.17)

where n is outward normal vector, thus obtaining the conservative form.
Finally, weak formulation (4.17) is defined on each control volume using

spline basis functions and test functions (4.15) in order to get fully discretized
control volume formulation:

αj

∫
Γi

(
D∇ϕj(x)

)
ndΓi −

∫
Γi

(
vϕj(x)

)
ndΓi

 =
∫

ΓNi

qNdΓN (4.18)

where i is the subscript which denotes index of control volumes and row of
stiffness matrix, while j is the subscript which denotes index of spline basis
functions and column of the stiffness matrix. It is valid for all internal and
boundary control volumes with Neumann boundary conditions. However,
as in G-IGA, Dirichlet boundary control volumes requires special treatment
of essential boundary conditions.

Conservation is an interesting feature of the control volume formulation.
The conservation is exactly satisfied over any control volume (local conserva-
tion), as well as over the whole computational domain (global conservation).
Furthermore, even the coarse-mesh solution exhibits an exact integral bal-
ance [10].

CV-IGA requires cheaper numerical integrations then G-IGA because
control volume formulation (4.17) requires only integration over CV bound-
aries Γi, while Galerkin formulation (see Eq. (4.9)) requires (full) integration
over the part of the domain where the particular test function is defined. Fur-
thermore, the number of nonzero basis functions for each discretized equa-
tion in CV-IGA is lower then in G-IGA, thus the cost for the solution of the
system of equations is generally lower then that for G-IGA. For comparison,
the number of nonzero basis functions for CV-IGA for each discretized equa-
tion is (n + 2)dim for odd order of basis functions and (n + 3)dim for even,
whereas for G-IGA this number is defined by (2n + 3)dim, where dim denotes
the dimensionality of the problem.
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Chapter 5

Adaptive techniques based on
B-spline and IGA

This chapter introduces hierarchical B-splines (HB) as well as truncated hier-
archical B-splines (THB) as adaptive technique used within IGA for local re-
finement. HB consists of defining a suitable set of basis functions on different
hierarchical levels. However, this strategy can be improved using truncation
operation to recover partition of unity and to have superior stability proper-
ties, giving rise to the THB. Giannelli et al. [16] introduced THB-splines with
aim to reduce the overlap of basis functions within HB by choosing a spline
basis with smaller supports. The reduced overlap yields a sparser stiffness
matrix which results with less time required for its assembly, less memory to
store it, and potentially less time for solving the discrete problem.

The analogue of h-refinement is knot insertion, whose insertion does not
change a curve geometrically or parametrically. Consider a knot vector, Ξ =
{ξ1, ξ2, ..., ξm+n+1}, and let ξ ∈ [ξk, ξk+1] be a desired new knot. By inserting
new knot, the new m + 1 basis functions are formed recursively following
(3.12) and (3.13) with new knot vector Ξ = {ξ1, ξ2, ..., ξk, ξ, ξk+1, ..., ξm+n+1}
(see Figure 5.1a). It should be noted that each unique internal knot value may
apper no more then n times otherwise the curve becomes discontinuous.

Figure 5.1a presents an example of a knot insertion. Starting knot vector
for the quadratic B-spline basis functions is Ξ0 = {0, 0, 0, 1, 2, 3, 3, 3}. A new
knots are inserted at ξ1 = 0.5, ξ2 = 1.5 and ξ3 = 2.5, which gives 3 new
basis functions in the new layout (see Figure 5.1a). After inserting new knots
ξi, i = 1, 2, 3, knot vector is changed, thus giving a new knot vector Ξ1 =
{0, 0, 0, 1

2 , 1, 3
2 , 2, 5

2 , 3, 3, 3}. This process of enriching the solution space can be
repeated by adding more basis functions of the same order. This subdivision
strategy is seen to be analogous to the classical h-refinement strategy in finite
element analysis.

In previous refinement procedure, the polynomial order of the basis func-
tions did not increase while inserting a knot(s). However, there is a strategy
of order elevation (p-refinement) where the polynomial order of basis func-
tions may be increased without changing the geometry or parameterization.
Furthermore it should be noted that each unique knot value in Ξ must be re-
peated to preserve discontinuities in the nth derivative of the curve that is be-
ing elevated. This strategy of order elevation is an analogue of p-refinement
in the FEA.
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FIGURE 5.1: Two different strategies of refinement within IGA.
Original knot vector for upper left and right domain is Ξ0 =
{0, 0, 0, 1, 2, 3, 3, 3}. (a) Knot insertion - spline functions of the
same order but smaller knot intervals, i.e. higher frequencies;
changing element size. Knot vector after knots insertion Ξ1 =
{0, 0, 0, 1

2 , 1, 3
2 , 2, 5

2 , 3, 3, 3}. (b) Order elevation - higher degree
of basis functions; element size remains the same. Knot vector

after order elevation Ξ1 = {0, 0, 0, 0, 1, 2, 3, 3, 3, 3}.

An example of order elevation is shown in Figure 5.1b with starting knot
vector Ξ0 = {0, 0, 0, 1, 2, 3, 3, 3} for the quadratic B-spline basis functions.
This time the multiplicity of the knots is increased by one giving one more
control point and basis function. New knot vector for four cubic basis func-
tions is Ξ1 = {0, 0, 0, 0, 1, 2, 3, 3, 3, 3} and are presented in Figure 5.1b (right
down).

5.1 Hierarchical B-spline basis functions

Hierarchical B-splines aim to construct base that is combined from coarse
level B-splines and fine level B-splines at different regions of the domain.
The fine level B-splines are generated from coarse level B-splines by global h-
refinement operations. Only a subset of the fine level functions are included
based on a selected refinement region. Refinement is procedure of gaining
finer control over a spline curve or surface. For curves, refinement is a local
process that permits the change of control vertices in one region of the curve
while leaving control vertices in other regions unaffected.

Uniform B-spline basis functions Bi,n(ξ) (i = 1, 2, ..., m) of a given order
n are defined on a knot vector Ξ = {ξ1, ξ2, ..., ξm+n+1}, where ξi ∈ R is the
i-th knot and m is the number of basis functions. Bi,n is defined on local
support [ξi, ..., ξi+n+1]. B-spline basis functions are refinable, which enables
the construction of HB and its truncated variant THB a modified version of
HB with the only difference that the basis functions whose support overlaps
finer levels are truncated [31], [33], [34]. Assume Ξ0 is an initial uniform knot
vector; Ξl(l = 1, 2, ...) can be obtained by l subdivisions of Ξ0, while l also
presents the resolution level, where for l = 0 mesh is always uniform.
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Hierarchical B-spline basis is constructed by excluding coarse level func-
tions whose supports are contained within the selected refinement area and
replacing them by the fine level functions whose supports are contained
within the same area as the excluded coarse functions (see Figure 5.2).

FIGURE 5.2: Local hierarchical h-refinement of the B2-spline
basis with knot vector Ξl = {0, 0, 0, 1, 2, 3, 4, 5, 5, 5} and refine-
ment area Ωl

r = (3, 5). Bl are hierarchical B-splines on refine-
ment level l, Bl+1

r are refinement B-splines used to construct
finer resolution level, and Bl+1 are B-splines combined from

coarse and finer resolution level.

Figure 5.2 shows a hierarchically h-refined basis in three rows (pictures).
The B-splines Bl from resolution level l (Figure 5.2a) are plotted in the first
row and the h-refined B-splines Bl+1

r of the Bl are plotted in the second row
(Figure 5.2b). The marked refinement area is set as Ωl

r = (3, 5). Functions
contained within (3, 5) from Bl are marked passive and excluded from fur-
ther process while the rest are marked active. Functions within (3, 5) from
Bl+1

r are marked active (solid black curve) and included in further process.
To construct Bl+1 (Figure 5.2c), only active basis functions from both level
are included, (Bl+1 = Bl

a ∪ Bl+1
r,a ).

To guarantee refinement, Ωl+1
r must at least contain the support of a sin-

gle basis function from the higher-level basis Bl+1. Since higher level basis
functions have smaller supports, having this as a minimal selection criterion
could lead to the addition of fine (higher) level functions without excluding
any coarse level functions, leading to excessive overlap of functions from dif-
ferent levels. Figure 5.2 shows how this choice has some disadvantages with



48 Chapter 5. Adaptive techniques based on B-spline and IGA

respect to e.g. possibility of having a partition of unity basis [24] and the
bandwidth of the resulting stiffness matrices.

Generally, the hierarchical B-spline basis functions in non-rational form
do not satisfy partition of unity which is evident from Figure 5.2. In last row
(Figure 5.2c), basis function from coarse resolution level Bl overlaps with first
two (active) basis functions from finer resolution level Bl+1

r , which can lead
to poor numerical conditioning.

5.2 Truncated hierarchical B-spline basis func-
tions

Truncated hierarchical B-splines (THB) were introduced and analysed in [16],
[64]. THB-splines can be considered as an upgrade for hierarchical B-splines
(HB) i.e., an alternative basis for the space of hierarchical splines, that regains
the partition of unity property and reduces the support of the basis functions,
therefore reducing the interaction between them. In the classical hierarchical
construction, coarse basis functions of a certain level l whose support is com-
pletely covered by finer basis functions of level l + 1 are replaced. However
for THB, the replacement is done as in the hierarchical case with addition that
coarse basis functions whose support has a non-empty overlap with Ωl+1 are
truncated (see Figure 5.4).

THB refinability (see [16], [31]) indicates that a basis function Bl
n defined

on Ξl can be represented as a linear combination of n + 2 Bl+1
n basis functions

defined on Ξl+1 as,

Bl
i,n(ξ) =

n+1

∑
k=0

cn
i,kBl+1

2i+k,n(ξ) with cn
i,k =

1
2n

(
n + 1

k

)
, i = 0, ..., ml − 1 (5.1)

where cn
i,k are the refinement coefficients (see table 5.1) and ml is the number

of basis functions defined on Ξl. This procedure enables h-adaptive methods
because each next resolution level has basis functions with two times smaller
compact support (h-refinement). The n + 2 basis functions Bl+1

2i+k,n on the next
level are called the children of Bl

i,n(ξ) i.e., denoted as,

chdBl
i,n(ξ) =

{
Bl+1

2i+k,n(ξ)|k = 0, 1, ..., n + 1
}

. (5.2)

Figure 5.3 shows how a uniform univariate cubic B-spline basis function Bl
0,3

can be represented by a weighted summation of its five children Bl+1
k,3 (k =

0, 1, 2, 3, 4). Each color represents one refinement coefficients and if ba-
sis functions have same refinement coefficients then they are colored with
same color (for example, red is assigned for Bl+1

0,3 (ξ) and Bl+1
4,3 (ξ) because

c3
0,0 = c3

0,4 = 1/8).
Figure 5.3b presents 5 B3 spline basis functions after h-refinement where

each children have two times smaller compact support then starting B3 spline
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(a) Bl
0,3(ξ) (b) Bl+1

k,3 (ξ); (k = 0, ..., 4) (c) c3
0,kBl+1

k,3 (ξ); (k = 0, ..., 4)

FIGURE 5.3: Refinability of a B3(ξ) spline basis function. (a)
Bl

0,3(ξ) is defined on the knot vector Ξl = {0, 1, 2, 3, 4}; (b)
Bl+1

k,3 (ξ); (k = 0, 1, 2, 3, 4) are defined on a knot vector Ξl+1 ={
0, 1

2 , 1, 3
2 , 2, 5

2 , 3, 7
2 , 4
}

; and (c) Bl+1
k,3 (ξ) is weighted with c3

0,k =
1
8 (

4
k) for k = 0, 1, 2, 3, 4.

basis function (Figure 5.3a). After including refinement coefficients (see Table
5.1) for each basis functions refined B3 spline basis functions are obtained,
as presented in Figure 5.3c, and according to (5.1) Bl

0,3 (Figure 5.3a) can be
represented by summation of its five children (refined basis functions; Figure
5.3c).

n
cn

i,k cn
i,0 cn

i,1 cn
i,2 cn

i,3 cn
i,4 cn

i,5 cn
i,6

1 1/2 1 1/2 - - - -
2 1/4 3/4 3/4 1/4 - - -
3 1/8 1/2 3/4 1/2 1/8 - -
4 1/16 5/16 5/8 5/8 5/16 1/16 -
5 1/32 3/16 15/32 5/8 15/32 3/16 1/32

TABLE 5.1: Refinement coefficients for Bn-spline; n=1,2,3,4,5.

In the following, construction of only two consecutive levels with ba-
sis functions from level l and l + 1 will be shown, where l ≥ 0. Start-
ing from the initial parametric domain Ωl with equally spaced knots Ξl =
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, Bl set of B-spline basis functions are defined on
a level l (see Figure 5.4). The supports of all the basis functions Bl from
initial level l covers Ωl i.e., Ωl = supp Bl. According to [65], the function
space spanned by Bl can be enlarged by replacing the certain B-spline ba-
sis functions with their children, which indicates a local refinement of basis
functions. Figure 5.4 shows a construction process for univariate cubic THB
but also for HB in three steps:

• Identify a set of basis functions Bl
p ⊆ Bl to be refined at level l (gray

solid curve) and designate them as passive while the remaining basis
functions in Bl are designated as active (Bl

a = Bl \ Bl
p).
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(a) HB-splines on level l and l + 1 (b) THB-splines on level l and l + 1

FIGURE 5.4: Comparison of univariate cubic HB- and THB-
splines. (a) Three steps to construct univariate cubic HB-spline
basis function without truncation and (b) tree steps to con-
struct univariate cubic HB-spline basis function with truncation

(THB).

• Obtain the children at level l + 1 (red solid curves) only for the passive
Bl

p and define them as active; Bl+1
a = chdBl

p.

• Merge all of the basis functions that are active from levels l and l + 1 to
obtain the hierarchical B-spline basis functions on the new level,

Bl+1
hb f = Bl+1 = Bl

a ∪ Bl+1
a . (5.3)

Eq. (5.3) refers to the global selection of all active basis functions, where
the active basis functions are updated in each recursive step described above.
Hierarchical B-spline basis functions in nonrational form do not satisfy par-
tition of unity. To overcome that problem and to decrease the overlapping
of basis functions for better numerical conditioning, a truncated mechanism
for hierarchical B-splines was developed [16], [31]. Figure 5.4 shows how
in the classical hierarchical construction, coarse basis functions from level l
whose support is completely covered by finer B-splines of level l + 1 are re-
placed. THB-splines refinement (replacement) works as in the hierarchical
case with addition of active coarse basis functions Bl

a whose supports have
a non-empty overlaps with Ωl+1. These functions need to be modified or
truncated as follows.

Definition. Given a set of (passive) basis functions Bl
p to be refined, refinement

area is defined as Ωl+1 = suppBl
p. Provided that Bl

i /∈ Bl
p is refinable and following

equation (5.1) for its refinability gives,

Bl
i(ξ) = ∑

suppBl+1
j ⊆suppBl

i

ci,jB
l+1
j (ξ), (5.4)
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where ci,j ∈ R are refinement coefficients from mid-knot insertions (see table 5.1),
and Bl+1

j (ξ) ∈ chdBl
i(ξ). The truncated basis function Bl

i is defined as

trunBl
i(ξ) = ∑

suppBl+1
j *Ωl+1

ci,jB
l+1
j (ξ) (5.5)

with respect to Bl
p [31].

Equation (5.5) indicates that only children of Bl
i whose supports are fully

contained in Ωl+1 are discarded while constructing the truncated basis func-
tion trunBl

i . In Figure 5.4, the gray solid line represents the basis function to
be refined Bl

p which is also set as passive, and refinement area is Ωl+1 = [3, 7].
In case for univariate cubic hierarchical B-splines, each basis function from
level l has five children on level l + 1, and four basis functions surrounding
Bl

p (2 on the left and 2 on the right; gray dashed curve) need to be truncated
because they have children with supports fully contained in Ωl+1. For the
two basis functions adjacent to Bl

p three children are discarded, and for the
other two basis functions, only one children is discarded. Basis functions that
are far away from refinement area Ωl+1 i.e., they do not have children within
that area, are not truncated. After truncating all designated basis functions,
new level is constructed by combining active functions from level l (black
solid curve and gray dashed curve; non-truncated and truncated) with ac-
tive basis functions from level l + 1 (red solid curve; Bl+1

a = chdBl
p).

The hierarchical B-spline basis with truncation has been proven to form
a partition of unity and therefore achieves strong stability [64]. It gives a
sparser connectivity among basis functions at different levels, and it can pre-
serve geometry when local refinement is performed [31].
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Chapter 6

Adaptive modeling based on
hierarchical Fup basis functions
and CV-IGA

Throughout the rest of this thesis strategy for the adaptation of Fup to non-
uniform meshes and their local refinement is investigated. A novel adaptive
algorithm that is based on control volume IGA formulation and novel hierar-
chical Fup basis functions [37], [38], [41] is presented. Because of its similar-
ity to the concept of isogeometric analysis (IGA) it is called control volume
isogeometric analysis (CV-IGA). In this chapter process of constructing 1D
and 2D hierarchical Fup (HF) basis functions is shown which are closely re-
lated to the HB and THB. HF have the option of local hp-refinement such
that they can replace certain basis functions at one resolution level with new
basis functions at the next resolution level that have a smaller length of the
compact support (h-refinement) but also higher order (p-refinement). This
feature provides spectral convergence and presents a substantial improve-
ment in comparison to THB that enable polynomial convergence. Further-
more, additional stabilization methods are included in adaptation procedure
to achieve even greater results and to deal with spurious numerical oscilla-
tions as is the case for advection-dominated problems [66], [67].

6.1 Hierarchical Fup basis functions

B-spline and Fup basis functions are refinable, which enables the construc-
tion of THB and HF basis functions [16], [31], [33]. As shown in previous
chapter, THB refinability indicates that a basis function Bl

n defined on Ξl can
be represented as a linear combination of n + 2 Bl+1

n basis functions defined
on Ξl+1 following Eq. (5.1) where n represents basis function order and Ξl is a
knot vector for resolution level l. This procedure enables h-adaptive methods
because each next resolution level has basis functions with two times smaller
compact support (h-refinement).

However, Fup basis functions refinement is done in a different way. Basis
function Fupl

n defined on Ξl can be represented as a linear combination of
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(a) Fupl
1(ξ) (b) Ck

2Fupl+1
2
(
ξ − k

22 +
2
23

)
;(k = 0, 1, 2)

FIGURE 6.1: Refinability of a Fup1(ξ) basis function. (a)
Fupl

1(ξ) is defined on the knot vector Ξl = {0, 1, 2, 3}; and
(b) Fupl+1

2

(
ξ − k

22 + 2
23

)
are defined on a knot vector Ξl+1 ={

0, 1
2 , 1, 3

2 , 2, 5
2 , 3
}

with Ck
2 = 1

22 (
2
k) for k = 0, 1, 2.

n + 2 Fupl+1
n+1 basis functions defined on Ξl+1,

Fupl
n(ξ) =

n+1

∑
k=0

Ck
n+1 · Fupl+1

n+1

(
ξ − k

2n+1 +
n + 1
2n+2

)
, (6.1)

where Ck
n+1 are the refinement coefficients (see Table 6.1)

Ck
n+1 =

1
2n+1

(
n + 1

k

)
(6.2)

The n + 2 basis functions Fupl+1
n+1 are called the children of Fupl

n, denoted as

chdFupl
n(ξ) =

{
Fupl+1

n+1

(
ξ − k

2n+1 +
n + 1
2n+2

)∣∣∣∣k = 0, 1, ..., n + 1
}

(6.3)

Figure 6.1a shows a basis function Fupl
1 defined on a knot vector Ξl =

{0, 1, 2, 3}, and Figure 6.1b shows its three children Fupl+1
2
(
ξ − k

22 +
2
23

)
de-

fined on a knot vector Ξl+1 =
{

0, 1
2 , 1, 3

2 , 2, 5
2 , 3
}

, where k = 0, 1, 2. Ac-

cording to Eq. (6.1), Fupl
1 (Figure 6.1b - black dashed curve) can be repre-

sented by a weighted summation of its three children Fupl+1
2 (Figure 6.1b -

red solid curve). In contrast to THB, hierarchical Fup basis functions (HF)
enable hp-adaptive methods because each next resolution level not only de-
creases compact support but also increases the order of the basis functions
(hp-refinement).



6.1. Hierarchical Fup basis functions 55

FIGURE 6.2: The three steps to construct hierarchical Fup ba-
sis functions. (a) In level l, basis functions F l

p that need to be
refined are determined (black dashed curve |Fupl

1) and they
are defined as passive, while remaining basis functions are de-
fined as active; (b) In level l + 1, three children (red solid curves
|Fupl+1

2 ) are designated as active; and (c) all active basis func-
tions from levels l and l + 1 are summed and form the hierar-

chical Fup basis functions F l+1
hb f .

n
Ck

n+1 C0
n+1 C1

n+1 C2
n+1 C3

n+1 C4
n+1 C5

n+1 C6
n+1

1 1/4 1/2 1/4 - - - -
2 1/8 3/8 3/8 1/8 - - -
3 1/16 1/4 3/8 1/4 1/16 - -
4 1/32 5/32 5/16 5/16 5/32 1/32 -
5 1/64 3/32 15/64 5/16 15/64 3/32 1/64

TABLE 6.1: Refinement coefficients for Fupn basis functions;
n=1,2,3,4,5.

At the zero coarsest level, we can define a set of uniformly distributed
Fup basis functions F 0. The initial domain is covered with the compact sup-
ports of all the Fup basis functions in F 0 i.e., Ω0 = suppF 0. Since Fup basis
functions are refinable, it indicates that the function space spanned by F 0

can be enlarged by replacing the selected Fup basis functions with their chil-
dren (see Eq. (6.1)) [41]. In the following, we will show only two consecutive
levels and construct level l + 1 from the level l.

Figure 6.2 illustrates the construction process of hierarchical Fup basis
functions in three steps:
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• Identify a set of basis functions F l
p ⊆ F l to be refined at level l (black

dashed curve) and designate them as passive while the remaining basis
functions in F l (black solid curves) are designated as active (F l

a = F l \
F l

p).

• Obtain the children at level l + 1 (red solid curves) only for the passive
Fupl

n and define them as active; F l+1
a = chdF l

p.

• Merge all of the basis functions that are active from levels l and l + 1 to
obtain the hierarchical Fup basis functions,

F l+1
hb f = F l+1 = F l

a ∪ F l+1
a . (6.4)

As mentioned in previous section, hierarchical B-spline basis functions in
nonrational form do not satisfy partition of unity. To overcome that problem
and to decrease the overlapping of basis functions for better numerical con-
ditioning, a truncated mechanism for hierarchical B-splines was developed
[16], [31]. However, hierarchical Fup basis functions satisfy partition of unity
such that every Fupn basis function on the zero coarsest level is multiplied
with constant 2−n. Since every Fupl

n basis function defined on the level l
can be represented as a linear combination of n + 2 Fupl+1

n+1 basis functions
defined on the level l + 1 (see Eq. (6.1)), it entails that all of the Fup basis
functions that are created at higher resolution levels also satisfy partition of
unity.

6.2 1-D adaptive algorithm

6.2.1 Basic adaptive algorithm parameters

The trial function space of uniformly distributed Fupn(ξ) basis functions on
the resolution level l of a given order n are defined using the knot vector. A
knot vector composed of m + n + 2 knot values will generate m linearly in-
dependent basis functions of degree n. The number of basis functions on the
first resolution level (ml; l = 0) is defined as input parameter, thus the length
of the characteristic interval (∆ξ) for any resolution level l is calculated as

∆ξ l =
ξm+n+2 − ξ1

(m0 − n− 1)2l (6.5)

where m0 is the number of basis functions on the first resolution level, and ξ1
and ξm+n+2 are first and last members of the knot vector on the first resolu-
tion level (l = 0), respectively.

Basis functions whose compact supports are at least partially located out-
side the domain are modified so that the i-th derivation is satisfied follow-
ing equation (3.41). In the vector space of mutually displaced Fupn ba-
sis functions, it is necessary to modify the (n + 1) basis functions on the
left and right boundary of the domain. Figure 6.3 shows a uniform set
of Fup1,i(ξ) (i = 1, ..., m; m = 6) basis functions defined on the knot
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vector Ξ = {0, 0, 0, 1, 2, 3, 4, 4, 4} with modified basis functions on the left
(Fup1,1,Fup1,2) and right (Fup1,5,Fup1,6) boundary of the domain.

FIGURE 6.3: Fup1(ξ) basis function trial space

The vertex of the basis function, i.e., the coordinate ξT, is the point with
the maximum function value. The vertex serves as the origin for the shifting
of the basis functions along the ξ axis by the length of the characteristic in-
terval (∆ξ). However, not all vertices are uniformly spaced according to the
length of the characteristic interval. Vertices of the modified boundary ba-
sis functions (see section 3.4) are shifted and located inside the domain area.
Their exact location can be calculated. One possibility is to calculate Greville
abscissae grid points following Eq. (4.14). From this point, when basis func-
tion vertex is mentioned, it is referred to the real coordinate of the vertex,
except for modified boundary basis functions whose real coordinate of the
vertex coordinate is represented by the Greville point.

6.2.2 Control volume distribution by levels

The classical FVM can be applied on all differential equations which can be
written in the divergence form, but it is in common use for discretizing com-
putational fluid dynamics equations [68]. For clarity, steady state ADE (4.5)
with appropriate boundary conditions (4.6) and (4.7) is considered.

First, the domain is divided by m CVs (Figure 6.4; Ωi; i = 1, ..., m). Then
ADE is integrated over each CV and multiplied with a finite number of
weighting (test) functions wi (see Eq. (4.15)).

FIGURE 6.4: Nonoverlapping control volume scheme for one-
dimensional case.

To derive CV-IGA, the 1D parameter space (from 0 to 1) defined by uni-
form open knots is shown on Figure 6.4. The observed domain is subdivided
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into a set of nonoverlapping CVs such that each CV surrounds one corre-
sponding vertex (Figure 6.4 - black dots) of the Fup basis functions. End
points of CV are defined at the half of the distance between neighboring ver-
tices (Greville abscissae for the modified basis functions; basis function ver-
tices for other basis functions). Note that the number of basis functions is the
same as the number of CVs.

In Figure 6.4, the focus is on the grid point that represents vertex Vi, which
has the grid points Vl on the left and Vr on the right side as its neighbors. The
dashed lines (Γi,l and Γi,r) surrounding vertex Vi represent faces of the CV in a
manner such that each CV boundary lies in the middle between two vertices.

In the following, three consecutive levels with control volume distribu-
tion after replacing certain basis functions for adaptation on each level will
be shown. Main focus will be on CV distribution i.e., how each CV is being
set for every new resolution level, without going in details why certain basis
functions are being replaced from current resolution level. Main difference
in higher resolution levels is overlapping of CVs. Adaptive criteria will be
discussed in the following sections.

Figure 6.5a shows uniformly distributed Fup basis functions on the knot
vector Ξ0 = {0, 0, 0, 1

8 , 2
8 , 3

8 , 4
8 , 5

8 , 6
8 , 7

8 , 1, 1, 1} with the positions of the vertices
(black dots) and corresponding CVs where each ith CV boundary is repre-
sented with dashed line. Figure 6.5b shows second resolution level after re-
placing Fup1,5 basis function (black dashed curve) from first resolution level
(assigned as passive) with three Fup2 basis functions (assigned as active) and
defined on knot vector Ξ1 = {2

8 , 5
16 , 3

8 , 7
16 , 4

8 , 9
16 , 5

8}. After assembling new
setup of Fup basis functions on the new resolution level (F 1 = F 0

a ∪ F 1
a ),

new CV distribution is set following the same instructions as before but hav-
ing in mind that there are 3 new vertices (1 vertex with old position as re-
placed basis function and 2 with new vertices positions). It should be noted
that size of CVs that are in contact with lower resolution level are enlarged to
solve problem of linearly dependent equations that would occur on higher
resolution levels. Problems would occur on levels that are l ≥ 4, because two
or more test functions from higher resolution level (l + 1) would overlap ex-
actly with test function from lower level (l), thus giving linearly dependent
equations. That problem is solved by enlarging test functions (CVs) from
higher resolution level (l + 1) that are in contact with lower resolution level
(l). Enlargement can be chosen anywhere from interval δ ∈ 〈0, 1

2〉. This
means that the CVs boundaries are distanced from Greville points by the
length of the compact support plus δ of the compact support length (see Fig-
ure 6.5b). Here, δ is chosen as δ = 1

4 , thus first and last CVs in one continuous
sequence (considering only higher resolution level) have wider area then rest
of the control volumes (see Eq. (6.5)) in that sequence (Figure 6.5b-c).

Figure 6.5c shows the third resolution level after replacing one Fup2 (red
dashed curve) basis function from F l+1 with four Fup3 basis functions de-
fined on knot vector Ξ2 = { 5

16 , 11
32 , 3

8 , 13
32 , 7

16 , 15
32 , 4

8 , 17
32 , 9

16}. Again after assem-
bling new setup of Fup basis functions, new CV distribution is set as be-
fore. However, now all four vertices are in new positions. In the case when
replaced Fup basis function is even order, new Fup basis functions (order
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of basis functions increase because of Eq. (6.1)) became odd order (Figure
6.5 b-c) and positions of all new vertices have new coordinates compared to
the replaced one. Otherwise, when replaced Fup is odd, then new Fup ba-

FIGURE 6.5: CV distribution for 3 consecutive levels. (a) uni-
form nonoverlapping CV distribution for first resolution level
with knot vector Ξ0 = {0, 0, 0, 1

8 , 2
8 , 3

8 , 4
8 , 5

8 , 6
8 , 7

8 , 1, 1, 1}; (b) CV
distribution on second resolution level with active Fup basis
functions from F 0 and F 1 with overlapping CVs; (c) CV distri-
bution on third resolution level with active Fup basis functions

from F 0, F 1 and F 2 and overlapping CVs.

sis functions became even order (Figure 6.5 a-b) and one of the new basis
functions vertex (middle one) coincides with the replaced (origin) Fup basis
function vertex.

6.2.3 Adaptive algorithm for function approximation and
BVP

The adaptive spatial strategy used in this work is a novel approach based
on the control volume IGA formulation and hierarchical Fup basis functions
(hp-refinement). In the following part, adaptive scheme for approximating
known function is presented. It is used for easier understanding of whole
adaptive process and serves as introduction for BVPs. In later part, adap-
tive strategy for solving BVP with its differences but also similarities with
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approximation of a known function is presented. The main idea is to rep-
resent the known function ( f ) in an adaptive manner so that coarse control
volumes and lower order of Fup basis functions are used in regions where
the solution is smooth, and fine control volumes and a higher order of Fup
basis functions are used in those areas where the solution varies strongly.

The approximation f̃ (x) of the known function f (x) : Ω → R is pre-
sented in the form of the linear combination (2.9). The difference between
the known function f (x) and its numerical approximation f̃ (x) yields the
numerical error:

ε(x) = f (x)− f̃ (x) = f (x)−
m

∑
j=1

αj ϕj(x) (6.6)

The meaning of the approximation is to minimize the error ε(x). If the control
volume formulation (see 4.3.3) is applied, the unknown coefficients αj are
obtained from the following system of equations

m

∑
j=1

αj

∫
Ω

ϕj(x)widΩ =
∫
Ω

f (x)widΩ; i, j = 1, 2, ..., m (6.7)

which, after calculating the integrals, has a reduced matrix form

aijαj = bi; i, j = 1, 2, ..., m (6.8)

where

aij =
∫
Ωi

ϕj(x)dΩ; bi =
∫
Ωi

f (x)dΩ. (6.9)

The adaptive procedure using the hierarchical Fup basis functions is pre-
sented in Figure 6.6.

If we consider a spatial domain Ω = [0, 8] with m0 = 10 Fupn ba-
sis functions with order n = 1, we can define Fup basis functions on
the zero coarsest level F 0, with the initial uniform knot vector Ξ0 =
{0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 8}. The characteristic interval for the zero coars-
est level is defined via Eq. (6.10). Since HF compact support on the next
level decreases the length two times with respect to the previous level, the
characteristic interval for any resolution level can be defined as

∆ξ l =
8− 0

(10− 1− 1)2l ; l = 0, 1, 2, ... (6.10)

where l represents the resolution level. Last, we need to define an adaptive
criteria (εA), which defines whether Fup basis functions are kept (marked as
active) or replaced (marked as passive). First, in order to define the control
volume formulation at the zero level, the domain must be subdivided into
m nonoverlapping control volumes where each CV edge lies in the middle
between two Greville points. In Figure 6.6, the corresponding control vol-
umes are presented above basis functions for better visualization. Then, the
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coefficients αj are calculated from the system of equations (6.8) so that the
Fup approximation ( f̃ ) satisfies the mean function values over all control
volumes (CVs).

The adaptive criteria for the function approximation are defined as∫
ΩA

1
ΩA

(
| f (x)− f̃ (x)|

)
dx < εA; i = 1, 2, ..., m (6.11)

where εA represents the defined threshold and ΩA is the integration area.
Since the numerical approximation ( f̃ ) satisfies the average function value of
the known function ( f ) over every CVi (i = 1, 2, ..., m) on the current (zero)
resolution level, the main idea for enabling an adaptation is to test how close
the numerical approximation ( f̃ ) is with respect to the known function ( f )
on the each half of the volume (see Figure 6.7). If all CVs satisfy adaptive
criteria, the adaptive procedure stops. However, if one or more CVs did not
satisfy Eq. (6.11), than those CVs are marked as refinable (e.g., Fig. 6.6a -
CV5,6).

Furthermore, all corresponding Fup0
1,i basis functions that are at least par-

tially located inside refinable CVs are marked as passive-F 0
p (Fig. 6.6a-black

dashed curve with local knot vectors, Ξ0
4 = {1, 2, 3, 4}, Ξ0

5 = {2, 3, 4, 5},
Ξ0

6 = {3, 4, 5, 6}, Ξ0
7 = {4, 5, 6, 7}).

Other Fup0
1,i basis functions are marked as active, i.e., F 0

a , and they are
kept in the next level. For the passive Fup0

1,i basis functions, the algorithm
introduces their Fup1

2,i children (Fig. 6.6b-right) (see Eq. (6.1)). It is possi-
ble that certain children of two neighboring basis functions mutually over-
lap (see 6.2.2), and then from these basis functions of the next level a “new”
one basis function is formed (Fig. 6.6b-left). Now, all Fup1

2,i basis functions(
Fig. 6.6b-red curves with local knot vectors: Ξ1

4 =
{

1, 3
2 , 2, 5

2 , 3
}

, Ξ1
5 ={3

2 , 2, 5
2 , 3, 7

2

}
, Ξ1

6 =
{

2, 5
2 , 3, 7

2 , 4
}

, Ξ1
7 =

{5
2 , 3, 7

2 , 4, 9
2

}
, Ξ1

8 =
{

3, 7
2 , 4, 9

2 , 5
}

,

Ξ1
9 =

{
7
2 , 4, 9

2 , 5, 10
2

}
, Ξ1

10 =
{

4, 9
2 , 5, 10

2 , 6
}

, Ξ1
11 =

{
9
2 , 5, 10

2 , 6, 13
2

}
, Ξ1

12 ={
5, 10

2 , 6, 13
2 , 7

})
are marked as active and they are merged with all active

basis functions from the level 0 (F 0
a ).

Fig. 6.6b represents the new setup of Fup basis functions on the level
(l = 1) with their CVs consisting of active Fup1 and Fup2 basis functions. The
procedure now calculates new Fup coefficients (αj) from the new system of
equations (6.8) so that the Fup approximation ( f̃ ) satisfies the function values
over all control volumes (CVs) from the level 1.

The numerical procedure is repeated if one or more CVs from level 1 did
not satisfy Eq. (6.11), and those CVs are marked as refinable (e.g., Fig. 6.6b
- CV8,9). Analogously, corresponding basis functions that are at least par-
tially located inside refinable CVs are marked as passive-F 1

p (Fig. 6.6b-red
dashed curve). For the new passive basis functions on level 1, we introduce
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their children (Fig. 6.6c-right) and merge them with other active basis func-
tions on the level 1 to obtain the new setup of Fup basis functions on level
2 with their CVs (Fig. 6.6c). If one or more of the n + 1 modified bound-
ary Fupn basis functions is selected for refinement on the left and/or right
boundary, the algorithm automatically marks all n + 1 boundary basis func-
tions on the left and/or right boundary as passive. This is necessary because
the presented modified boundary basis functions are calculated in the form
of a linear combination of the original Fupn basis functions (see (3.41)). The
adaptive procedure is repeated until the prescribed accuracy is not achieved
at all CVs or the maximum user-defined level is not reached.

FIGURE 6.6: Adaptive procedure with Fupn basis functions
within 3 levels. Left: basis functions with corresponding CVs;
Right: tree structure of Fup basis functions on the zero coarsest

level and its children on higher levels.

The adaptive spatial strategy used for the boundary value problem (BVP)
is in some sense similar to the one used for function approximation. In the
following, focus will be on the main differences between these two strate-
gies. The major differences are adaptive criteria and adaptation of boundary
conditions.

In the function approximation, a known function is approximated, while
in BVP, we usually do not know the solution of the differential equation.
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FIGURE 6.7: Dividing i-th CV into two parts (CVi,1 and CVi,2)
while testing adaptive criteria on i-th CV.

The question is how to solve (approximate) the BVP. One of the possible ap-
proaches is shown considering the ADE (see Eq. (4.5)). In that case, solving
ADE is reduced to the flux conservation over all CVs (see Eq. (4.18)). Since
the CV formulation exactly satisfies Eq. (4.18) (i.e., the weak integral form
of the conservation law) over each CV on the current resolution level, the
adaptive criteria is used to check the conservation error for each half of the
particular i-th CV (see Figure 6.7). All CVs where at least one of the half
(CVi,1 and/or CVi,2; see Figure 6.7) has the conservation error greater than
the prescribed threshold are marked as refinable, and the adaptive procedure
refines selected basis functions in the next level in the same way presented
for the function approximation (see Figure 6.6). Neumann boundary condi-
tions on their respective CVs are satisfied in same sense as all internal CVs
by checking conservation error for each half of the particular i-th CV on the
boundary of the domain, i.e. Neumann boundary conditions are weakly im-
posed by incorporating the known value (4.7) to the weak formulation (4.18).
However, Dirichlet boundary conditions are satisfied in the strong sense by
directly satisfying the boundary conditions value (4.6).

6.2.4 Adaptive criteria

Adaptive criteria i.e., εA defines whether Fup basis functions are kept or re-
placed while refining resolution level l. For i-th control volume (CV), bound-
ary is defined via Γi,l and Γi,r, where subscript letter l (left) and r (right) rep-
resents side faces of the CV in a manner such that each CV boundary lies in
the middle between two adjacent vertices.

The adaptive criteria can be defined in many ways. They do not have
to be the same for every problem. In the function approximation, adaptive
criteria is set to be related to the function accuracy Equation (6.11), while in
BVP (ADE (4.5) or weak formulation (4.18)), the criteria is set to be the mass
conservation error. There are many other meaningful numerical and phys-
ical choices. For example, for function approximation, the function deriva-
tives can be an ideal option in some cases. Furthermore, if someone is using
collocation formulation, then checking numerical error via Eq. (6.6) can be
thought of as a natural step. In addition, for BVP, the solution error between
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two resolution levels can be defined as criteria [51]. Moreover, satisfaction
of the Peclet number can be very valuable for ADE problems (see [67]). Fi-
nally, any combination of these criteria can also be new obtained criteria. For
ADE advection-dominated problems, inclusion of the stabilization technique
in the few first resolution levels can also be a valuable part of an adaptive
strategy, which will be shown in verification examples.

6.3 2-D adaptive algorithm

6.3.1 2-D hierarchical basis functions

Multidimensional Fup basis functions are obtained as tensor products of the
one-dimensional basis functions defined for each coordinate direction. For
example, the two-dimensional Fup basis functions are defined as,

Fupn(ξ, η) = Fupn(ξ) · Fupn(η) (6.12)

where Fupn(ξ) and Fupn(η) are nth order Fup basis functions that are de-
fined in the ξ- and η- parametric directions, respectively. Figure 6.8 shows
two-dimensional Fup1(ξ, η) basis function and one of its partial derivatives.

FIGURE 6.8: 2D Fup basis functions. F=Fup1(ξ, η); a)F and
b) ∂F

∂ξ .

For 1D Fup basis functions, Fupl
n defined on Ξl can be represented as a

linear combination of n + 2 Fupl+1
n+1 defined on Ξl+1 (see Eq. (6.1)). However,

since 2D Fup basis functions are made as tensor product of the 1D Fup basis
functions, Fupl

n(ξ, η) defined on the level l can be represented as a linear
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FIGURE 6.9: (a) Fupl
1(ξ, η) defined on the knot vector (b) Ξl =

{0, 1
3 , 2

3 , 1} and Hl = {0, 1
3 , 2

3 , 1} in ξ- and η- directions, respec-
tively.

combination of (n+ 2)x(n+ 2) i.e., (n+ 2)d Fupl+1
n+1 defined on the level l + 1,

Fupl
n(ξ, η) =

n+1

∑
i=0

n+1

∑
j=0

Ci
n+1Cj

n+1Fupl+1
n+1

(
ξ− i

2n+1 +
n + 1
2n+2

)
Fupl+1

n+1

(
η − j

2n+1 +
n + 1
2n+2

) (6.13)

where Ci
n+1 and Cj

n+1 are refinement coefficients (see Eq. (6.2) and Table 6.1),
and d represents dimensional (in this case d = 2).

Figure 6.9 shows Fupl
1 defined on the knot vectors Ξl = {0, 1

3 , 2
3 , 1}

and Hl = {0, 1
3 , 2

3 , 1}, and Figure 6.10 shows its nine children (see Eq.
(6.3)) defined on a knot vectors Ξl+1 = {0, 1

6 , 1
3 , 1

2 , 2
3 , 5

6 , 1} and Hl+1 =

{0, 1
6 , 1

3 , 1
2 , 2

3 , 5
6 , 1}. According to Eq. (6.13), Fupl

1 (Figure 6.9a) can be repre-
sented by a weighted summation of its nine children Fupl+1

2 (Figure 6.10a-i).
Refinement of Fupn(ξ, η) basis functions is again done in three steps.

First, identify a set of basis functions F l
p ⊆ F l to be refined at level l and des-

ignate them as passive. Remaining basis functions are designated as active
(F l

a = F l \ F l
p). After obtaining the children at level l + 1 (only for passive;

F l
p) and defining them as active new setup of Fup basis functions at level l + 1

is obtained by merging all of the basis functions that are active from levels l
and l + 1, thus obtaining the hierarchical Fup basis functions.

6.3.2 Basic adaptive algorithm parameters

Since multidimensional Fup basis functions are obtained (constructed) as
tensor product of the one-dimensional Fup basis functions, basic parameters
that were defined for 1D case will apply here with small changes.
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FIGURE 6.10: Fupl
1(ξ, η) presented in the Figure 6.9 can be rep-

resented as linear combination of 9 Fupl+1
2 (ξ, η) with refine-

ment coefficients Ci
n+1 and Cj

n+1 (i = 0, ..., n + 1; j = 0, ..., n + 1).

The trial function space of uniformly distributed Fupn(ξ, η) basis func-
tions on the resolution level l and given order n are defined over the knot
vectors in the form Ξ = {ξ1, ξ2, ..., ξmξ} and H = {η1, η2, ..., ηmη} (see Figure
6.9b), where mξ and mη represents number of basis functions in ξ- and η-
directions, respectively. The number of basis functions on the first resolution
level ml,ξ , ml,η; l = 0 are defined as input parameters.

Length of the characteristic intervals (∆ξ, ∆η) are calculated as

∆ξ l =
ξmξ+n+2 − ξ1

(ml,ξ − n− 1)2l ; ∆ηl =
ηmη+n+2 − η1

(ml,η − n− 1)2l , (6.14)

where ξ1 and ξmξ+n+2 are first and last members of the knot vector in ξ-
direction and η1 and ηmη+n+2 are first and last member of the knot vector in
η- direction on the first resolution level (l = 0).

Basis functions whose compact support is at least partially located out-
side the domain are modified by satisfying ith derivation (see equation
(3.41)). In the vector of mutually displaced Fupn basis functions in 2D, it
is necessary to modify the (n + 2) basis functions in ξ and/or η direction
if they are near boundary of the domain. Figure 6.11 shows three cases of
modification of boundary Fup basis functions defined on the knot vectors
Ξ =

{
0, 0, 0, 1

3 , 2
3 , 1, 1, 1

}
and H =

{
0, 0, 0, 1

3 , 2
3 , 1, 1, 1

}
. Figure 6.11b) shows
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FIGURE 6.11: 3 cases of modified boundary Fupl
1(ξ, η) basis

function. (a) Modified only in η- direction while in ξ- direction
basis function is without modification. (b) Modified in both ξ-
and η- direction. (c) Modified only in ξ- direction while in η-

direction basis function is without modification.

Fup1(ξ, η) with modification in both directions (ξ- and η-) because compact
supports are located outside of the domain in each direction. Furthermore,
Figure 6.11(a,c) shows modification in only one direction since compact sup-
port is at least partially located outside the domain in η direction (Figure
6.11a) or ξ direction (Figure 6.11c).

Adaptive criteria (εA) defines whether Fup basis functions are kept or re-
placed while refining resolution level l. For ith control volume (CV), bound-
ary is defined via Γi,l, Γi,r, Γi,u and Γi,d, where subscript letter l (left), r (right),
u (up) and d (down) represents side faces of the CV in a manner such that
each CV boundary lies in the middle between two adjacent Greville points.

6.3.3 Control volume distribution by levels

To derive CV-IGA, the 2D parameter space defined by uniform (open) knot
vector is shown on Figure 6.12. Domain is subdivided into a set of CVs such
that each CV surrounds one corresponding vertex (Figure 6.12 - black cir-
cles) of basis functions and CVs boundary is defined at half distance between
neighboring vertices. Note that like before (one-dimensional case) the num-
ber of basis functions is the same as number of CVs.

In Figure 6.12, the focus is on the grid point that represents vertex Vi,j,
which has the grid points Vl, Vr, Vu and Vd as its neighbors and CVi,j bound-
aries (Figure 6.12 - red line) are marked as Γi,j,l, Γi,j,r, Γi,j,d, Γi,j,u.

Figure 6.13 shows a nested sequence of CVs domain, together with the
corresponding vertices for each resolution level l, where each CV is linked
with only one vertices i.e., the number of basis functions corresponds to the
number of CVs.

CVs on the higher level (l ≥ 1) are build in a slightly different way then
on starting level where all CVs are nonoverlapping. Each CVs boundary on
the higher level (see Figure 6.13) are positioned exactly half the length of the
characteristic intervals ∆ξ, ∆η (see Eq. (6.14)) from the corresponding Fup
basis function vertex, thus higher levels (CVs) are overlapping with lower
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FIGURE 6.12: Control volume scheme for two-dimensional
case.

levels (CVs). Overlapping process makes this algorithm even more robust,
but at the cost of more expensive numerical integration.

FIGURE 6.13: A nested sequence of CV domains for the con-
struction of the Fup hierarchy according to relation Ωl ⊇ Ωl+1

for l = 0, 1, 2 for two-dimensional case.

Also, it should be emphasized that the CVs overlap is in order to obtain
the simplest possible algorithm when compiling new levels and to simplify
the numerical integration across each control volume. A more complex pro-
cess which would avoid overlapping of CVs but would make integration
process more complex is replacing each control volume with voronoi cells.

Figure 6.13b) shows uniformly distributed Fup1 basis functions on the
knot vectors Ξ0 and H0 with the position of vertices (black dots) and cor-
responding CV where each ith CV boundary is represented with solid line.
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Furthermore, after replacing one Fup1 (assigned as passive) basis function
from the first resolution level, 9 Fup2 basis functions (red dots, assigned as
active) are introduced to the second resolution level (Ω1). After assembling
all active basis functions (assembles active Fup1 and Fup2 basis functions;
F 1 = F 0

a ∪ F 1
a ), new CV distribution is set by placing new boundaries for

higher order of Fup basis functions. CVs boundaries are set like in one-
dimensional case. New level that is in contact with lower level l has increased
CV area to avoid problem of linearly dependent equations. Enlargement is
set as δ = 1

4 . Since this is in two-dimensional domain, CVs in contact with
the lower resolution level l form a ring of CVs that have an increased surface
area due to the contact with the lower resolution level l by δ factor (see Fig-
ure 6.13). Refinement procedure continues and replaces one Fup2 (assigning
it as passive) basis function that is in the middle of previously inserted Fup2
basis functions with 16 Fup3 basis functions (blue dots) that are assigned as
active. After assembling all active basis functions, new CV distribution is
set for last resolution level, thus final CV setup is finished and is shown in
Figure 6.13b). Figure 6.13a) represents a nested sequence of CVs after two re-
finement level and shows how with every new level, CVs act like a “patch”
for lower level because it covers the part lost by removing CVs that are con-
nected with passive Fup basis functions. Overlapping of the new CVs with
lower level makes this algorithm even more robust but main advantage is
easier process of constructing test (weight) functions in two-dimensional do-
mains.

6.4 Stabilization methods

In addition to the adaptive algorithm (hp-refinement with Fup basis func-
tions), an additional stabilization technique for controlling numerical oscil-
lations is included, especially at lower resolution levels. The stabilization
is based upon the modified Streamline Upwind/Petrov-Galerkin (SUPG)
method (see [66], [67]) inside proposed CV-IGA. Essentially, the perturbation
function is added to the test function,

p = γ
∆ξ

2
dϕ

dξ
(6.15)

where γ is a coefficient to control the magnitude of the perturbation function,
∆ξ is the element size (CV) and ϕ is the interpolation function, i.e., we are
allowing more weight to the node in the upstream direction and reducing the
weight to the node in the downstream direction. Applying this perturbation
function leads to the addition of the artificial dispersion to the ADE (4.5).
Basically, an artificial dispersion,

D̃ = γ
∆ξ

2
v (6.16)

which only has an effect in the streamline direction, is introduced to Eq. (4.18)
to reduce oscillations. This is based on the argument that the oscillations
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in the numerical solutions are generated by the high Peclet number in the
streamline direction.

The global Peclet number is defined as,

Peg =
v · L

D
. (6.17)

where L represents the domain length, and D and v are dispersion and ve-
locity, respectively. While the Peclet number is high, Pe > 2, the numerical
solution of the advection-dominated problems will generate oscillations in
the solutions. One way to stabilize oscillations is by changing the grid size.
Since every new resolution level changes the compact support size, the grid
Peclet number is defined as,

Pee =
v · ∆ξ

D
. (6.18)

where ∆ξ represents the grid size. The magnitude of the coefficient γ,

γ = coth
(

Pee

2

)
− 2

Pee
(6.19)

defines quantity of the added artificial dispersion which depends on the ele-
ment Peclet number.

For two dimensional cases, the idea of upwinding can not be easily ap-
plied. Various methods have been proposed to implement the basic idea of
upwinding to two dimensional analyses. In this thesis, upwinding method
that extends to their use in two dimensional analyses with control volume
procedure will be presented. The procedure of upwinding schemes for the
two dimensional analysis is analogous to that for the one dimensional anal-
ysis. Oscillations in numerical solutions to advection-dispersion problems
for the two dimensional cases are more complicated than for the one dimen-
sional cases. In the two dimensional case, most of the upwinding schemes
provide numerical solutions that still contain oscillations and a defect that is
usually called the crosswind diffusion effect. This effect usually occurs when
the velocity field is unaligned with the grid lines. The crosswind diffusion in
numerical solutions is a spurious diffusion in the direction perpendicular to
the streamline resulting in the deterioration of the numerical results.

The starting point is to consider the weighted residual formulation∫
Ω
(w− p) [∇ · (vu)−∇ · (D∇u)] dΩ = 0 (6.20)

where the perturbation function p is defined as

p =
zC2rhe

2||ve||
∇ · (vw) = A∇ · (vw) (6.21)

where ve represents average element velocity (||ve|| =
√

v2
x + v2

y in two di-
mensions), he represents element characteristic length and rest are defined
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as

z = coth(Pe)− 1
Pe
≈ min

[
1,

Pe
3

]
, (6.22)

where Pe represents discrete Peclet number defined as

Pe =
||ve||he

2De
(6.23)

and last

C2r =


1 for steady-state problems

2√
15

for transient problems (phase optimization)

C∆t for transient problems

(6.24)

with C∆t representing algorithmic Courant number
(

C∆t =
||ve||∆t

he

)
. Since

CVs that are used for two-dimensional problems are rectangular-shaped ele-
ments, the element characteristic length can be calculated as

he =
1
||ve||

(
|vx|∆x− |vy|∆y

)
. (6.25)

For other element shapes and more details see Yu and Heinrich [69].
The minus sign for perturbation function p in Equation (6.20) is made

to correct the direction for the artificial diffusion term for the control volume
method. After integrating Equation (6.20) by parts to reduce order of the con-
tinuity requirement of both the weighting function and the discrete variable
gives,

−∑
∫

ΩCV

∇w · (vu− D∇r)dΩCV +
∫
Γ2

wvu · ndΓ2 −
∫
Γ2

whdΓ2

+ ∑
∫

ΓCV

[w (vu− D∇u) · n]+− dΓCV

+
∫
Ω

∫
Ω

Awv · ∇ [∇ · (vu)−∇ · (D∇u)] dΩ

−∑
∫

ΓCV

Av · n{w [∇ · (vu)−∇ · (D∇u)]}+−dΓCV = 0.

(6.26)

In Equation (6.26), the fifth integral represents a weighted residual formation
of the equation

v · ∇ [∇ · (vu)−∇ · (D∇u)] = 0. (6.27)

Weighted residual formulation of Equation (6.27) is identically zero because
any solution to the general conservation equation (see Equation (4.5)) sub-
ject to appropriate boundary conditions (see (4.6) and (4.7)) is also a solu-
tion of Equation (6.27). By setting w to be equal to the control volume test
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(weight) function (see (4.15) makes the first integral in Equation (6.26) go to
zero. Moreover, according to the Brooks and Hughes [70], the upwind con-
tributions from the diffusion term in sixth integral in Equation (6.26) can be
neglected, thus giving final weak form which can be written as

∑
∫

ΓCV

(vu− D∇u) · ndΓCV +
∫
Γ2

vu · ndΓ2

−
∫
Γ2

hdΓ2 −∑
∫

ΓCV

Av · n [∇ · (vu)] dΓCV = 0.
(6.28)

Last integral in Equation (6.28) arises as a result of the perturbation
weighting and can be interpreted as an artificial diffusion term acting in the
streamline direction. Furthermore, in case of limiting case when Peclet num-
ber equals to zero (Pe = 0), A equals to zero and the formulation reduces to
standard control volume formulation.



73

Chapter 7

Numerical verification of adaptive
algorithm on 1-D and 2-D problems

This chapter provides verification examples that illustrates the efficiency of
the HF for function approximation and for modeling BVPs. Problems are
presented in two parts, as one-dimensional and two-dimensional problems.
The first example is an approximation of a known function that has a steep
front in the middle of the domain. This example demonstrates HF’s ability
to capture sharp fronts by introducing new levels into a portion of the do-
main where it is needed. The second example describes the solution of the
Poisson’s equation, which has an exact solution (for one-dimensional and
two-dimensional problem). Furthermore, third example presents advection-
dominated advection-dispersion problem. For one-dimensional problem a
steep from on the right boundary of the domain arises from the dominated
advection and has exact solution. However, two-dimensional problem does
not have an exact solution. Moreover, for both one-dimensional and two-
dimensional problems, stabilization is included for better numerical solu-
tions. Last example presents classical L-shape problem i.e., stationary heat
conduction problem with exact solution. All of the examples illustrate the
ability of HFs to efficiently and accurately describe different spatial scales.

7.1 Approximation of a known function

7.1.1 1D Approximation

The selected test function for 1-D problem ( f (x) : Ω → R) for the function
approximation is

f (x) = − tanh
(

x− 2/3
0.008

)
(7.1)

with chosen numerical parameters at the zero level n = 1, m0 = 18 and the
domain defined as Ω = [0, 2]. The error threshold is set as εs = 10−5, which
implies that the residual (see Eq. (6.6)) between the Fup approximation and
the given function over all half CVs on every level must be less than this pre-
scribed threshold. Figure 7.1 shows the evolution of the adaptive procedure
using HF at six consecutive resolution levels starting with uniform Fup1 basis
functions.
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FIGURE 7.1: HF approximation of the function (7.1). (a) the
given function (black solid curve) and its HF approximation
(black dashed curve), (b) the absolute difference between the
numerical and exact solution (black solid line) and the error
threshold (black dashed line), and (c) the adaptive grid on dif-
ferent resolution levels (black circle represents Fup basis func-

tion vertices).

Function approximations (black dashed curve) of the given function
(black solid curve) for each level are shown in Figure 7.1 (1a-6a). The error
measure between the numerical approximation and the given function (pre-
sented as Error(x) in semi-log scale) is calculated as the integral difference
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between those two functions on all half CVs, as shown in Figure 7.1 (1b-6b).
The basis functions used for the numerical approximation, i.e., active ba-

sis functions, at each level are represented by their vertices (Fig. 7.1, 1c-6c,
black circles).

Although CVs are not directly shown, they can be visualized with the
help of basis functions’ vertices (see 6.2.2), since every CV’s edge is placed
between the vertices of the two adjacent functions.

The adaptive procedure (hp-refinement) is repeated until all residuals are
less than the prescribed threshold, as shown in Figure 7.1. Note that fine
CVs with a higher order of Fup basis functions are obtained only around the
front, while in other regions, the adaptive grid uses only the lower order of
Fup basis functions and coarse CVs. This helps to reduce the computational
cost and increase efficiency.

For HF, the main idea is to control the numerical error through the adap-
tive algorithm over all CVs by employing the error threshold. Hence, it is
interesting to test how the numerical approximation accuracy behaves when
changing the adaptive threshold. Figure 7.2 shows a demonstration of the
efficiency in terms of the L2 error norm as a function of the total degrees
of freedom (DOFs), and the slopes of the simulated lines represent the con-
vergence rate (p). The total number of DOFs represents all basis functions
needed to obtain the solution (m). Application of the control volume formu-
lation with uniform Fupn basis functions achieves the maximum theoretical
convergence of order p = n + 1. However, the control volume formulation
with adaptive hierarchical Fupn basis functions yields spectral convergence
(solid line with filled squares), as shown in Figure 7.2. Moreover, it should
be noted that the adaptive procedure achieves a higher accuracy than the
prescribed threshold (dashed line with filled squares, εA), clearly proving
the control of the numerical error. It means that real numerical error of the
function approximation is strictly less than the prescribed threshold.

FIGURE 7.2: Convergence analysis obtained with uniform and
adaptive Fupn and B3 basis functions.

Uniform B-spline basis functions such as B3 achieve a maximum conver-
gence order of p = n + 1 (dashed line with empty circles) just as the uniform
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Fupn basis functions, as shown in Figure 7.2. Uniform Fup basis always gives
more accurate solution than uniform B-splines due to its enhanced continu-
ity, but the convergence rate is related to the basis functions order in both
cases. However, the adaptive THB3 (dashed line with filled circles) proce-
dure does not achieve spectral convergence such as the adaptive procedure
with HF basis functions. It reaches a higher accuracy then the uniform pro-
cedure but keeps the maximum theoretical convergence of order p = n + 1,
as shown in Figure 7.2.

FIGURE 7.3: Analysis of the convergence order and number of
basis functions: uniform Fup basis functions vs adaptive algo-

rithm.

Next, the efficiency of the algorithm using hierarchical Fup basis func-
tions is demonstrated in comparison with the results obtained with the uni-
form grid, by monitoring the number of basis functions required to achieve
the maximum convergence order (Figure 7.3). At approximately m = Nb f =
4096 (DOF) uniform Fupn (n = 1, 2, ..., 10) basis functions achieve the max-
imum (theoretically expected, i.e., p = n + 1) convergence order. However,
the adaptive procedure does not follow the same “rule”, since it achieves
spectral convergence with a significantly higher convergence order, as shown
in Figure 7.3. It should be noted that the convergence order makes sense only
when we are on fine grids and achieve a monotone convergence (above 4000
DOF for the uniform procedure).

7.1.2 2D Approximation

For the 2-D problem selected test function is

f (x, y) = arctan
(

50
(
−0.25 +

√
x2 + y2

))
(7.2)

with chosen numerical parameters at the zero level n = 1, m0
x = 10, m0

y = 10
and the domain defined as Ω = [0, 1]2. The error threshold is set as εs = 10−7,
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which implies that the residual (see Eq. (6.6)) between the Fup approxima-
tion and the given function (7.2) over all half CVs on every level must be less
than this prescribed threshold. Figure 7.1 shows the evolution of the adap-
tive procedure using HF at five consecutive resolution levels starting with
uniform Fup1(x, y) basis functions.

FIGURE 7.4: HF approximation of the function (7.2). (a) HF ap-
proximations of the given function, (b) the absolute difference
between the numerical and exact solution and (c) the adaptive
grid on different resolution levels where each color represents

Fup basis function vertices on different level.



78 Chapter 7. Verification for 1-D and 2-D problems

Function approximations (Funnum(x, y)) of the given function (7.2) for
each level are shown in Figure 7.4(1a-5a). The error measure between the
numerical approximation (Error(x, y)) is calculated as the integral difference
between those two functions on all quarters of the CVs (the 1-D error is tested
on the halves of the CVs), as shown in Figure 7.4(1b-5b). Figure 7.4(1c-5c)
shows active basis functions used for the numerical approximation and are
represented by their vertices (each color represents one level, i.e., active ba-
sis functions on that level). Again, CVs are not directly shown but can be
visualized with the help of the basis functions vertices.

The adaptive procedure is repeated until all residuals are less then the
prescribed threshold. For given function (7.2) and adaptive threshold set as
εs = 10−7, adaptive procedure needs 5 levels to approximate given prob-
lem, as shown in Figure 7.4. Note that fine CVs with a higher order of Fup
basis functions are obtained only around the “well” edges since this area is
hardest to approximate. Moreover, in other regions the adaptive grid uses
lower order of Fup basis functions and coarse CVs which helps reducing the
computational cost and increases efficiency.

FIGURE 7.5: Convergence analysis obtained with adaptive
Fupn basis functions.

Figure 7.5 shows efficiency in terms of the L2 error norm as a function
of the total DOFs with slope representing the convergence rate (p). Adap-
tive procedure just like in one-dimensional case yields spectral convergence
(solid line with empty squares), as shown in Figure 7.5. Furthermore, adap-
tive procedure achieves a higher accuracy then the prescribed threshold
(dashed line with empty squares, εA), thus proving the control of the nu-
merical error. This means that the real numerical error of the function ap-
proximation is strictly less then the prescribed threshold.
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7.2 Poisson equation

7.2.1 1D Numerical solution

For one-dimensional problem, reduced case of Eq. (4.5) leads to diffusion
type of problem in order to describe flow in a heterogeneous porous media
by setting advection term to zero

∇ · (K(x)∇h(x)) = 0 (7.3)

where h is the hydraulic (piezometric) head and K(x) is the hydraulic con-
ductivity function that can be derived from Eq. (4.5). In the case of a homo-
geneous aquifer, the groundwater flow problem (7.3) reduces to the Laplace
equation.

Heterogeneity is defined as

K(x) = e10sin(8x+1)−10 (7.4)

with appropriate boundary conditions:

h(0) = 0 (7.5)

h(L) = 1 (7.6)

The exact solution of the presented problem is given by

h(x) = h(0) + [h(L)− h(0)]

∫ x
0 1/(e10sin(8x+1)−10)dx∫ L
0 1/(e10sin(8x+1)−10)dx

. (7.7)

The input parameters for numerical analysis are set as n = 1, m0 = 18
with the domain size set as L = 1(m). The error threshold is set as εs =
5 · 10−6, which implies that the mass conservation error over all half CVs on
every level must be less than this prescribed threshold.

Figure 7.6 presents the numerical solution of the flow in heterogeneous
porous media defined by Eq. (7.3). The adaptive grid captures the front, as
shown in Figure 7.6(1b-4b). The convergence analyses are shown in Fig. 7.7
and Fig. 7.8 for the head solution for the uniform and adaptive procedure.
The convergence analysis in IGA have been performed and tested using the
collocation (C-IGA) or Galerkin (G-IGA) method, unlike the control volume
method (CV-IGA) [62]. Figure 7.7 depicts a demonstration of the efficiency in
the terms of the L2 error norm as a function of DOF, and shows that the con-
vergence rate for CV-IGA is the optimal (p = n + 1) for odd and the subop-
timal (p = n) for even order (n) of basis functions. Malenica [49] performed
an analysis with three methods (C-IGA, CV-IGA and G-IGA) and concluded
that G-IGA (Galerkin) yields the optimal convergence rate for the Poisson
problem for all orders of Fup basis functions (i.e., p = n + 1), while C-IGA
yields suboptimal convergence rates of p = n− 1 for odd basis functions and
p = n for even basis functions. Figure 7.7 illustrates that CV-IGA yields the
optimal convergence p = n + 1 for odd basis functions, but the suboptimal
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FIGURE 7.6: Numerical solution of the flow in heterogeneous
porous media defined by Eq. (7.3). (a) HF approximation (black
solid curve) on the last resolution level, (1b-4b) adaptive grid
on different resolution levels (black circle represents Fup basis

functions’ vertices).

rate p = n for even basis functions (it is still mystery in IGA community why
it is case for C-IGA; the same situation appears for CV-IGA and even basis
functions). It is important to emphasize that CV-IGA is a less expensive nu-
merical procedure then G-IGA due to the reduced number of nonzero matrix
entries and inexpensive numerical integrations. CV-IGA lies between G-IGA
and C-IGA in terms of efficiency and computational cost. Once again, the
adaptive procedure for the diffusive-like boundary value problem exhibits
spectral convergence (black solid line with filled triangles).

Furthermore, the efficiencies of the uniform and adaptive algorithms are
compared (Figure 7.7). The “mystery” [62] of even basis functions having
a reduced convergence rate for the uniform procedure is also presented in
Figure 7.8, where Fup1 and Fup2 have the same convergence order of p = 2,
Fup3 and Fup4 have the same convergence order of p = 4, etc. However, the
adaptive procedure (Fig. 7.7 - Fupadap) again shows a significant deviation
from the uniform distribution of basis functions with its spectral convergence
order.
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FIGURE 7.7: Convergence analysis of the head field for the uni-
form and adaptive procedure.

FIGURE 7.8: Analysis of the convergence order and number of
basis functions: uniform Fup basis functions vs adaptive algo-

rithm.

7.2.2 2D Numerical solution

For 2D Poissson equation verification problem, so called wavefront well
problem is considered. It is commonly used example for testing adaptive
refinement algorithms because of a steep wave front in the interior of the do-
main [7], [71], [72]. Parameters determine the steepness and location of the
wave front. With the arctangent wave front that has exact solution that is
similar to the function (7.2), there is a mild singularity at the center of the
circle. However, for this test center of the circle is outside the domain, thus
performance on the wave front is examined, not the singularity.

Problem is defined in the form

∇ · (−κ∇u(x, y)) = f (x, y) (x, y) ∈ Ω (7.8)

with boundary conditions

u(x, y) = uD(x, y) (x, y) ∈ ∂Ω (7.9)
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The numerical simulation domain is defined by a square area Ω =
[0, 1]x[0, 1] where the boundaries are ΓD = ∂Ω and ΓN = ∅ (see Figure 7.9a).
The exact analytical solution for the pressure field is given by:

u(x, y) = arctan (α (r− r0)) where r =
√
(x− xc)2 + (y− yc)2 (7.10)

where xc and yc represents center of the circular wave front, r0 is the distance
from the wave front to the center of the circle, and α gives the steepness of
the wave front.

FIGURE 7.9: Numerical solution domain and exact solution plot
of the wave well problem defined by Eq. (7.8).

It should be noted that the right hand side f (x, y) is generated by taking
the Laplacian (∇2) of the exact solution given in Equation (7.10). The exact
solution depicted in Figure 7.9b displays a “front”-type of behavior where
the solution is rapidly changing across a circular band (a quarter of a circle)
inside the domain. For the conductivity matrix κ only isotropic case is con-
sidered, and for simplicity in deriving the source function, the conductivity
equivalent coefficient is set equal to

κ =

[
1 0
0 1

]
(7.11)

The adaptive simulation shown in Figures 7.10 and 7.11 is performed with
starting polynomial degree n = 1. Number of basis functions on uniform
level is defined as m0

x = 18, m0
y = 18, center of circular wave front is set at

xc = yc = −0.05 with r0 = 0.7 and α = 100. The error threshold is set as
εs = 1 · 10−4, which implies that the mass conservation error over all half
CVs on every level must be less than this prescribed threshold.

Figures 7.10 and 7.11 presents the numerical solution of the wave front
given by Eq. (7.8). With every new level, numerical solution becomes closer
to the real solution (see Figures 7.10 and 7.11 1b-6b). Even though, differ-
ence between numerical solution and exact solution is presented in Figures
7.10 and 7.11 (1b-6b) because exact solution is known, it was not the adaptive
criteria used for testing like in approximating function (7.1) and (7.2). Here,
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adaptive criteria is used to check conservation error for each quarters of the
particular i-th CV on the current resolution level. Quarters of the CVs are
used because CV formulation exactly satisfies governing equation (i.e., the
weak integral form of the conservation law), over each CV on the current res-
olution level. The adaptive grid captures the front (see Figures 7.10 and 7.11
1c-6c) and repeats adaptive procedure until conservation error is less then
the prescribed threshold at each quarter of the CVs. For given parameters
and using HF, six levels are needed in order to find numerical solution that
has conservation error less then prescribed error threshold on all quarters of
the CVs.

FIGURE 7.10: Numerical solution of the wave front well prob-
lem defined by Eq. (7.8) (first part, from first level up to third).
(a) HF approximation, (b) the absolute difference between the
numerical and exact solution and (c) the adaptive grid on dif-
ferent resolution levels where each color represents Fup basis

function vertices on different level.

The convergence analysis for the uniform and adaptive procedure is
shown in Figure 7.12. Figure 7.12 depicts a demonstration of the efficiency
in the terms of the L2 error norm as a function of DOF, and like in one-
dimensional case shows that the convergence rate for CV-IGA is the optimal
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FIGURE 7.11: Numerical solution of the wave front well prob-
lem defined by Eq. (7.8) (from forth level up to sixth level). (a)
HF approximation, (b) the absolute difference between the nu-
merical and exact solution and (c) the adaptive grid on different
resolution levels where each color represents Fup basis function

vertices on different level.

(p = n + 1) for odd and suboptimal (p = n) for even order of basis functions.
It is important to emphasize that once again, the adaptive procedure for the
diffusive-like boundary value problem exhibits spectral convergence (Figure
7.12 black solid line with filled squares).

7.3 Advection-dispersion equation

7.3.1 1D Numerical solution

The third example uses the advection-dispersion equation described by Eq.
(4.5), where D [m2/s] and v [m/s] are constant with appropriate boundary
conditions:

u(0) = 0 (7.12)
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FIGURE 7.12: Convergence analysis of the wave front problem
given in the form (7.8) for the uniform and adaptive procedure.

u(L) = 1 (7.13)

and in this example, u[-] can be physically interpreted as concentration. The
numerical input parameters are set as n = 1, m0 = 18 and the domain size,
dispersion and velocity are determined by the following parameters:

L = 1(m); D = 1 · 10−6(m2/s); v = 1 · 10−3(m/s) (7.14)

which defines the global Peclet number as Peg = 1000. The error threshold
is set as εs = 5 · 10−6, which implies that the mass conservation error over
all half CVs on every level must be less than this prescribed threshold. The
exact solution of the presented steady 1D advection-dispersion problem is
given by

u(x) =
e(x·v)/D − 1

ev/D − 1
. (7.15)

Figure 7.13 presents the evolution of the sharp boundary layer and cor-
responding adaptive spatial grid at five consecutive resolution levels. The
results show that in the case of advection-dominated transport problem, the
adaptive grid (Fig. 7.13, 1c-5c) accurately captures the front and controls the
numerical oscillations and numerical error with higher resolution levels (Fig.
7.13, 1a-5a). The first level presents the significant onset of instabilities due
to the uniform grid and high corresponding element (grid) Peclet number
(Pe= 62.5). Instabilities are reduced at the third resolution level.

Additionally, the numerical error is reduced with each resolution level
(Fig. 7.13, 1b-5b), i.e., introducing a higher order of Fup basis functions and
fine control volumes helps to obtain a better numerical solution.

The stabilization technique (described in 6.4) is not added on all resolu-
tion levels but only for the first three levels (l = 0, 1, 2). Since the Peclet
number is higher at the initial resolution levels, it means it is more relevant
to apply stabilization only to those resolution levels.

Figure 7.14 presents the evolution of the numerical solution and corre-
sponding adaptive spatial grid at five consecutive resolution levels with the
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stabilization method applied to the adaptive algorithm. Significant improve-
ment can be seen on the first two levels (e.g., Fig. 7.13-1a vs. Fig. 7.14-1a). At
the same time, the computational cost is reduced since fewer basis functions
(Fig. 7.13-5c 108 Fup basis functions vs. Fig. 7.14-5c 44 Fup basis functions)
are needed to achieve the same mass conservation error on all half CVs (Fig.
7.13-5b vs. Fig. 7.14-5b).

FIGURE 7.13: Numerical solution of the ADE (4.5) at different
resolution levels (without stabilization procedure); (1a-5a) an-
alytical solution (black solid curve) and its HF approximations
(black dashed curve) (1b-5b) mass conservation error over all
half CVs (black solid line) and thresholds (black dashed line)
and (1c-5c) adaptive grid on different resolution levels (black

circle represents Fup basis functions’ vertices).
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FIGURE 7.14: Numerical solution of the ADE (4.5) with stabi-
lization procedure at the first three levels; (1a-5a) analytic solu-
tion (black solid curve) and its HF approximation (black dashed
curve),(1b-5b) mass conservation error over all half CVs (black
dashed line) and (1c-5c) adaptive grid on different resolution

levels (black circle represents Fup basis functions’ vertices).
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FIGURE 7.15: Convergence analysis for uniform and adaptive
method

Furthermore, the efficiencies of the uniform and adaptive algorithms are
compared (Figure 7.15). Again, the “mystery” of even basis functions having
a reduced convergence rate for the uniform procedure is also presented. Fup1
and Fup2 have the same convergence order of p = 2, Fup3 and Fup4 have the
same convergence order of p = 4, etc., as shown also in Figure 7.16.

FIGURE 7.16: Analysis of the convergence order and number of
basis functions: uniform Fup basis functions vs adaptive algo-

rithm

However, the adaptive procedure with HF (Fig. 7.15- solid line with filled
triangles, Fupadap) again shows a significant improvement compared to the
adaptive procedure with THB (Fig. 7.15- dashed line with filled squares,
B3,adap) and the uniform distribution of basis functions (Fup or B-spline), with
its spectral convergence order. It is important to point out that the adap-
tive technique with the stabilization method (Fig. 7.15- solid line with filled
squares, Fup∗adap) at the first three levels achieves even better efficiency. Since
the Peclet number is lower at the higher resolution levels, there is no need for
stabilization on those levels.
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FIGURE 7.17: Convergence analysis for the uniform and adap-
tive method (first derivative of the solution).

Figure 7.17 presents the convergence analysis of the first derivative of the
solution (sum of advective and dispersive flux). Now, CV-IGA yields the op-
timal convergence rate (p = n) for all orders of uniform Fup basis functions.
Since calculation of fluxes is usually more important than basic variable, CV-
IGA can be regarded as optimal IGA methodology satisfying local/global
conservation conditions as well as obtaining accuracy very close to the opti-
mal Galerkin solution. The adaptive procedure with stabilization (Fig. 7.17-
solid line with filled squares, Fup∗adap) again shows a significant improve-
ment compared to the uniform distribution of basis functions as well as the
adaptive technique without the stabilization method (Fig. 7.17- solid line
with filled triangles, Fupadap).

7.3.2 2D Numerical solution

Two-dimensional benchmark example is taken from [14], [17], [24] which
consists of solving the advection-dispersion equation

D∆u− v · ∇u = 0 (7.16)

on the unit-square with discontinuous Dirichlet boundary conditions (see
Figure 7.18). The dispersion D coefficient is chosen extremely small (D =
8 · 10−4) compared to the advection velocity v = (sin θ, cos θ)T, thus very
sharp layers arise that start at the discontinuity of the boundary condition.
Sharp interior and boundary layers require stable numerical techniques in
addition to increased resolution to be accurately captured. Adaptation with
Fup basis functions (hp-refinement) gives very accurate numerical results but
still needs large number of basis functions (unlike uniform basis layout) so
SUPG stabilization (see 6.4) is employed as additional factor to adaptive pro-
cedure.

Adaptive resolution of the internal and boundary layers are investigated
with the present HF procedure starting from m0

x = 18, m0
y = 18 Fup basis

functions on the starting (uniform) resolution level. The error threshold is
set as εs = 1 · 10−4, which implies that the mass conservation error over all
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quarters CVs on every level must be less then this prescribed threshold. The
exact solution of the presented problem is not known.

FIGURE 7.18: Numerical solution domain with discontinuous
Dirichlet boundary conditions for the Advection-dispersion

problem.

Figure 7.19 presents the evolution of the sharp boundary layer and corre-
sponding adaptive spatial grids at five consecutive resolution levels in two-
dimensional domain. It can be observed that the refinement captures the lo-
cation of the internal and the boundary layers very well. Despite the high
Peclet number no stability or robustness issues in the adaptive algorithm
were encountered. There are some under- and overshooting of the first (uni-
form) level along the internal layer. These nonphysical oscillations are a re-
sult of the discretization of the first order spatial derivative in the convective
term when the convective term dominates the other terms in the governing
equation. Moreover, five adaptive HF refinement levels are required to get
control over the undershooting close to the jump at the inflow boundary.
Mass conservation error detects the internal layer as well as the boundary
layer. However, the refined patches are not only around the boundary layer
and the internal layer, solely because adaptive algorithm or mass conserva-
tion error is not good enough solution for this form of the problem. But, just
like in one-dimensional case, here, in two-dimensional case for advection-
dominated problem, stabilization process is also included (see Figure 7.20).
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FIGURE 7.19: Numerical solution of the ADE (7.16) at different
resolution levels (without stabilization); (1a-5a) HF approxima-

tion

It is more relevant to apply stabilization only to the first couple of levels
(in this case, for the first three levels, l = 0, 1, 2) because the Peclet number
is higher at the initial resolution levels. Figure 7.20 presents the evolution
of the numerical solution and corresponding adaptive spatial grids at four
consecutive resolution levels with the stabilization method (see 6.4) applied
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to the adaptive algorithm. Comparing solutions with (Figure 7.20) and with-
out (Figure 7.19) stabilization method yields significant improvement on the
first (uniform) level. Moreover, the computational cost is reduced since fewer
basis functions are needed on higher levels to achieve the same mass conser-
vation error on all quarters of the CVs.

FIGURE 7.20: Numerical solution of the ADE (7.16) with sta-
bilization procedure at different resolution levels; (1a-4a) HF
approximations; (1b-4b) corresponding adaptive spatial grids

Figure 7.21 presents the convergence analysis of the uniform and adaptive
algorithms using Fupn basis functions, with respect to the degrees of freedom
used to achieve a certain accuracy. The results for the uniform (n = 1, 2, 3, 4)
grids shows a significantly reduced convergence rate due to the disconti-
nuity in the boundary conditions (see Figure 7.18). However, as expected,
HF adaptive algorithm is again superior to a uniform strategy, and achieves
spectral convergence rate which is quite impressive for this type of problems.
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FIGURE 7.21: Convergence analysis for uniform and adaptive
method

7.4 Engineering problems with irregular geometry

In this part, results obtained with adaptive algorithm on problems with irreg-
ular geometry are presented. Considering stationary heat conduction prob-
lem

∆u = 0 (7.17)

on an L-shaped domain Ω = [−1, 1]2 \ [0, 1]2, see Figure 7.22a), with bound-
ary conditions

u = 0 on ΓD (7.18)

∂u
∂n

= qN on ΓN (7.19)

FIGURE 7.22: The L-shape problem: a) Numerical solution do-
main with boundary conditions and b) exact solution plot.
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such that the exact solution is given by

u = r2/3 sin
(

2θ − π

3

)
(7.20)

in polar coordinates (r, θ), where r2 = x2 + y2 and θ = arctan (y/x). The
expression for the Neumann boundary condition qN is derived based on the
exact solution (7.20). For the given elliptic problem, the re-entrant corner at
(0, 0) in the domain causes a singularity in the solution. An optimal conver-
gence rate is not obtained when uniform mesh refinement is performed for
the problems where the solution is not sufficiently smooth [22].

Presented HF procedure starts with m0
x = 18, m0

y = 18 Fup basis functions
on the starting (uniform) resolution level. The error threshold is set as εs =
9 · 10−3, which implies that the mass conservation error over all quarters CVs
on every level must be less then this prescribed threshold. The exact solution
of the presented problem is shown in Figure Figure 7.22b).

L-shaped domain is discretized by two elements (patches), as shown in
Figure 7.23b.

FIGURE 7.23: The L-shape problem: a) Fup discretized geome-
try with a ncp = 25 number of control points per each element,
and b) for nel = 2 number of elements. In a) red circles repre-
sent the control points, whereas the shaded region is the mod-

eled geometry.

Figure 7.23a) shows control points for the coarse mesh. The coordinates
of the control points serve as coefficients (see (4.1)) in spline representation
for transforming one 2D subdomain from the parameter space to the physical
space.

Figure 7.24 presents the numerical solution for the stationary heat con-
duction problem in two-dimensional domain. The area of interest is detected
and resolved locally using HF basis functions (see Figure 7.24). Refinement
captures the re-entrant corner in the domain at (0, 0) where a singularity in
the solution occurs. For given parameters and using HF, six levels are needed
in order to find numerical solution that has conservation error less then pre-
scribed error threshold on all quarters of the CVs.
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FIGURE 7.24: Numerical solution of the stationary heat con-
duction problem defined over an L-shaped domain (governed
by Laplace equation (7.17)) at different resolution levels; (1a-
6a) HF approximations; (1b-6b) corresponding adaptive spatial

grids.
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It should be noted that CVs that are linked with odd order of Fup basis
functions on level l and have one side of CVs boundary on top of the Jacobian
discontinuity (see Figure 7.23 where two elements share a common border)
are enlarged to resolve numerical problems that can occur while solving gov-
erning equations on those CVs. For more details about enlargement process
see 6.3.3.

The convergence analysis is performed using L2 norm and is plotted in
Figure 7.25 for uniform Fup1, Fup2 and HF basis functions. It can be ob-
served that adaptive HF basis functions again improves the convergence rate
by achieving spectral convergence rate. However, uniform grids shows a sig-
nificantly reduced convergence rate due to the re-entrant corner at (0, 0) in
the domain (singularity). The present numerical example thus confirms that
adaptive algorithm works well for rough problems.

FIGURE 7.25: Convergence analysis for uniform and adaptive
method

7.5 Space-time advection-dispersion problem

This section describes the mixing of transport processes, for instance in
porous media. The one-dimensional advection-dispersion process can be de-
scribed by the following equation, in the form:

∂C(x, t)
∂t

= D
∂2C(x, t)

∂x2 − v
∂C(x, t)

∂x
(7.21)

with appropriate boundary conditions:

C(x, 0) = 0 (7.22)

C(0, t) = C0;
∂C(2, t)

∂x
= 0 (7.23)

where C represents the dependent variable (concentration [M/L3]), while D
is the dispersion coefficient and v is the transport velocity in the x direction.
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FIGURE 7.26: Numerical solution of the ADE (7.22) at different
resolution levels; (1a-5a) HF approximation (without stabiliza-

tion), (1b-5b) corresponding adaptive time-spatial grids.
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FIGURE 7.27: Numerical solution of the ADE (7.22) at different
resolution levels; (1a-4a) HF approximation (with stabilization),

(1b-4b) corresponding adaptive time-spatial grids.

The domain, dispersion, velocity and threshold are defined by: L = 2m;
D = 10−5, v = 10−3, ε = 5 · 10−4. The initial condition (see Eq. (7.22))
shows that initially the domain was occupied by fresh water. However, the
left boundary consists of some denser fluid (for example the salt source) that
continuously flows into the domain, and the right boundary states that there
is no dispersion flux through that boundary.

Figure 7.26a) shows the numerical solution in the x− t domain obtained
with space-time HF basis functions. It represents the change in the solute
concentration over the space through time. This change occurs in a narrow
transition zone (see Figure 7.26). Figure 7.26b) shows an adaptive grid in the
space-time domain. In initial stages of the process, a fine CVs with higher
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order of Fup basis functions are needed due to very challenging initial con-
ditions and the creation of a very sharp concentration front. It should be
noted that only one time step is used, and the difference between presented
adaptive numerical and analytical solutions (see [73]) is strictly less then the
prescribed threshold for t > 200. However, for lower t, the numerical error is
slightly higher then the prescribed threshold, due to discontinuity of initial
conditions (see Eq. (7.22) and (7.23)). It should be noted that this initial error
does not propagate further over time because HF adaptive method converts
the boundary-initial problem to a quasi-boundary problem controlling the
global temporal/spatial error.

Figure 7.27 presents the evolution of the numerical solution and corre-
sponding adaptive spatial grid at four consecutive resolution levels with the
stabilization method just like in section 7.3. Again the computational cost is
reduced since fewer basis functions and levels (Figure 7.26-5b vs 7.27-4b) are
needed to achieve the same mass conservation error on all quarters of the
CVs.

Figure 7.28 shows convergence analysis using L2 norm. Uniform analysis
is skipped since presented problem has singularity due to discontinuity of
initial conditions similar to the L-shape problem (see previous section 7.4),
thus only adaptive algorithm without stabilization is tested. It can be ob-
served that adaptive HF basis functions achieves spectral convergence rate.
This example is used to show how adaptive HF method handles moving
fronts and have the ability to change the grid dynamically, following a front
during the simulation while keeping spectral convergence rate.

FIGURE 7.28: Convergence analysis for adaptive method (with-
out stabilization)
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Chapter 8

Conclusions

8.1 Summary

In this thesis, for the first time hierarchical Fup (HF) basis functions are cre-
ated and implemented into control volume IGA formulation. Control vol-
ume formulation was used in numerical modeling because it contains several
interesting properties such as:

• Local and global conservation properties,

• Very close accuracy to the Gallerkin’s solution for much lower compu-
tational cost,

• Direct physical meaning of the discretized equations,

• Increased accuracy and stability in relation to the collocation method.

Furthermore, conservation is an interesting feature of the control volume for-
mulation. The conservation is exactly satisfied over any control volume (lo-
cal conservation), as well as over the whole computational domain (global
conservation).

Fup functions are used to develop new type of hierarchical basis func-
tions, which can be summarized as follows:

• The usage of Fup basis functions for numerical solutions of engineering
problems provides the opportunity for exact CAD geometry descrip-
tion.

• Enables higher continuity throughout the whole domain.

• Refinement can be performed without affecting the computational ge-
ometry.

• Fup functions enables local hp-refinement which is superior to refine-
ment procedures done with classical B-spline or NURBS.

• HF achieves spectral convergence rate unlike uniform Fupn and Bn ba-
sis functions which achieves the maximum theoretical convergence or-
der of p = n + 1.
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Isogeometric analysis (IGA) approach is used as a unified framework for
representation of the geometry and solution in multiscale sense. By using a
linear combination of smooth hierarchical Fup basis functions all fields are
described as continuous and smooth functions. However, since classical IGA
uses the Galerkin (G-IGA) or collocation (C-IGA) approach with B-spline or
NURBS basis functions, here, the developed model is based on the hierarchi-
cal Fup basis functions and the control volume formulation (CV-IGA). More-
over, CV-IGA enables local and global mass conservation (excellent for error
testing), as well as approximate solutions of higher smoothness.

These advantages are the main reasons for adopting the control volume
formulation as the foundation, and using Fup basis functions as represen-
tative member of spline basis functions. Developed adaptive procedure is
specially efficient in solving demanding engineering problems with highly
localized gradients. First, an analysis of the one-dimensional and two-
dimensional problems is performed starting with the approximation of the
known function to present basic parameters of the adaptive algorithm. It
also serves as introduction problem for easier understanding of the adap-
tive procedure. Second type of problem is commonly used Poisson example
for testing adaptive refinement algorithms because of a steep fronts that oc-
curs in the interior of the domain. For the one dimensional case, diffusion
type of problem in order to describe flow in a heterogeneous porous media
is used. The adaptive grid has been shown to accurately captures the front
and that the adaptive algorithm achieves spectral convergence rate. For two-
dimensional case, so called wavefront well problem is considered. Just like
for one-dimensional problem, here, the adaptive grid captures the front while
reducing conservation error on each resolution level. Demonstration in the
terms of the L2 error norm as a function of DOF is presented. Just like in one-
dimensional case, the convergence rate for uniform CV-IGA is the optimal
(p = n + 1) for odd and suboptimal (p = n) for even order of basis func-
tions, unlike for the adaptive procedure which again for the diffusive-like
boundary value problems exhibits spectral convergence.

Since many problems in fluid dynamics can be regarded as advection-
dominated, third example addresses these type of problems. In many cases,
advection-dominated problems feature sharp interfaces and large gradients,
which can be strongly localized in spatial direction. For this type of problems,
fine spatial resolutions are needed only in specific locations to resolve the de-
manding small-scale solution features. Moreover, for the remaining part of
the domain, coarse resolution is usually sufficient. This adaptive procedure
represents one of the most efficient way to address these types of problems.
Furthermore, the efficiency of the adaptive algorithm is tested and again
shows a significant improvement compared to the uniform case, achieving
spectral convergence rate. However, additional stabilization procedures are
needed to obtain even better numerical results since some nonphsysical os-
cillations can occur when convective term dominates the other terms in the
governing equation. It is important to point out that the adaptive procedure
with stabilization method achieves even better efficiency.

Thus in this work, a novel spatial adaptive algorithm is developed using
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new type of hierarchical Fup basis functions. Hierarchical Fup basis func-
tions enables local hp-refinement which means that higher resolution lev-
els have basis functions not only of smaller length of the compact support
(higher frequencies; h-refinement) but also contain basis functions of higher
order (p-refinement). Thus, the method obtains spectral convergence proper-
ties, while the existing hierarchical B-splines (HB) and truncated hierarchical
B-splines (THB) achieve convergence determined by the degree of the poly-
nomial of the basis functions p = n.

8.2 Scientific contributions

New type of hierarchical Fup basis functions that enable local hp-refinement
are developed in this thesis. Local hp-refinement is done by replacing cer-
tain basis functions at one resolution level with new basis functions at the
next resolution level that have a smaller length of the compact support (h-
refinement) but also higher order (p-refinement). This adaptive technique
(local hp-refinement) has not been performed in this way so far, which opens
the way to new knowledge and techniques in solving real engineering prob-
lems characterized by a wide range of spatial scales (due to concentrated
force, boundary conditions, pumping or recharging, advective dominant
problems in transfer processes, etc.). Hierarchical Fup basis functions do
not require additional modifications to preserve the essential property of the
partition of unity and allow easy implementation of (local) hp-refinement.
Adaptive algorithm is verified on classic 1D and 2D benchmark test cases
and compared with classical B-spline hierarchical functions. It should be
noted that the presented adaptive procedure achieves a higher accuracy then
the prescribed threshold, thus providing the control of the numerical error.
This means that the real numerical error of the approximations is strictly
less then the prescribed threshold. Furthermore, control volume formulation
with adaptive hierarchical Fupn basis functions yields spectral convergence,
in comparison with adaptive THB procedure that achieves higher accuracy
then the uniform procedure but keeps the maximum theoretical convergence
order of p = n + 1.

The first applications of the developed adaptive algorithm are presented
on 1-D and 2-D examples of approximation of the known function, Poisson
equation which has wide application in structural mechanics and fluid me-
chanics, elasticity problems and on equations of mass and energy conduction
generally shown with diffusive and advection-dispersive equation. In par-
ticular, a comparison with analogous h-adaptive procedures based on IGA
and hierarchically modified B-splines is shown. A special contribution is the
numerical proof that the proposed method (using Fup basis functions) con-
verges in a spectral way.

It is important to emphasize that CV-IGA with adaptive procedure for
the diffusive-like boundary value problem exhibits spectral convergence,
whereas for uniform layout CV-IGA yields the optimal convergence p =
n + 1 for odd basis functions, but the suboptimal rate p = n for even ba-
sis functions.



104 Chapter 8. Conclusions

In the case of the advection-dominated transport problem, on the first
level significant onset of instabilities can occur due to the uniform grid and
high corresponding grid Peclet number. However, the adaptive grid accu-
rately captures the front and controls the numerical error and numerical
oscillations with higher resolutions levels, thus instabilities are reduced at
higher (adaptive) resolution levels. Furthermore, stabilization is also applied
to the adaptive algorithm for the advection-dominated problem yielding sig-
nificant improvement on the first few resolution levels. Moreover, the com-
putational cost is reduced since fewer basis functions are used to achieve the
same mass conservation error on all CVs.

The developed new adaptive CV-IGA with the hierarchical Fup basis
functions used here for the first time is original and as such represents certain
alternative for solving problems compared to classical numerical methods.

8.3 Future perspectives

Finally, some possibilities and directions for future progress can be summa-
rized as follows:

• In this work, hierarchical Fup basis functions that consist of the whole
family of algebraic atomic functions are presented. Future work could
investigate advantages of using exponential atomic Fup basis functions
[48], especially for solving advection-dominated problems where spou-
rious numerical oscillations occur. Namely, these functions are defined
using frequency parameter which is closely related to the Peclet num-
ber. Introducing numerical and physical consequences in the structure
of the basis functions will cause that developed adaptive algorithm
could lead to more stable algorithms without oscillations enabling even
greater convergence rate.

• The developed 2D adaptive algorithm adds new Fup basis functions at
a higher level in both directions (2D Fup basis functions are made as
tensor product of the 1D Fup basis functions; see (6.12)). By introduc-
ing an improvement so that the algorithm adds basis functions only in
the direction where the change of solution is most demanding could
significantly reduce a number of degrees of freedom, thus obtain even
cheaper numerical solutions and accordingly even better convergence
rate.

• Apply adaptive strategy for geometry and material description (i.g.,
heterogenuos porous material) where proposed algorithm becomes
unified framework describing material, geometry and solution in adap-
tive way resolving all spatial and temporal scales and expand it to
three-dimensional problems.

• Finally, an ambitious attempt to extend the proposed adaptive algo-
rithm with Fup basis functions to the resolution of multiple-variable
solution space-time scales arising in complex multiphysics problems



8.3. Future perspectives 105

would be very interesting. It should include additional adaptive pro-
cess tied to the time variable. Presented adaptive spatial strategy could
serve for initial testing process with the basic hypothesis that the solu-
tion would not “move” outside the border of the adaptive grid.
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