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Adaptive numerical modeling of engineering problems using
hierarchical Fup basis functions and Control Volume IsoGeometric

Analysis

Abstract:

The main objective of this thesis is to utilize the powerful approximation properties of Fup
basis functions for numerical solutions of engineering problems with highly localized steep
gradients while controlling spurious numerical osicllations and describing different spatial

scales.

The concept of isogeometric analysis (IGA) is presented as a unified framework for
multiscale representation of the geometry and solution. This fundamentally high-order approach
enables the description of all fields as continuous and smooth functions by using a linear
combination of spline basis functions. Classical IGA usually employs Galerkin or collocation
approach using B-splines or NURBS as basis functions. However, in this thesis, a third concept
in the form of control volume isogeometric analysis (CV-1GA) is used with Fup basis functions
which represent infinitely smooth splines. Novel hierarchical Fup (HF) basis functions is
constructed, enabling a local hp-refinement such that they can replace certain basis functions at
one resolution level with new basis functions at the next resolution level that have a smaller
length of the compact support (h-refinement), but also higher order (p-refinement). This hp-
refinement property enables spectral convergence which is significant improvement in
comparison to the hierarchical truncated B-splines which enable h-refinement and polynomial
convergence. Thus, in domain zones with larger gradients, the algorithm uses smaller local
spatial scales, while in other region, larger spatial scales are used, controlling the numerical error
by the prescribed accuracy. The efficiency and accuracy of the adaptive algorithm is verified
with some classic 1D and 2D benchmark test cases with application to the engineering problems

with highly localized steep gradients and advection-dominated problems.

Keywords: control volume, isogeometric analysis, spline basis functions, hierarchical Fup basis

functions, adaptive numerical modeling, advection-dominated problems, local hp-refinement
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Adaptivno numeri¢ko modeliranje inZenjerskih problema Koristeci
hijerarhijske Fup bazne funkcije i 1zoGeometrijsku Analizu Kontrolnih

Volumena

Sazetak:
Glavni cilj ove teze je iskoristiti mo¢na aproksimacijska svojstva Fup baznih funkcija za
numericko modeliranje inzenjerskih problema s izrazito lokaliziranim gradijentima uz kontrolu

numerickih oscilacija.

Predstavljen je koncept izogeometrijske analize (IGA) kao cjeloviti pristup za
viserezolucijsko modeliranje geometrije i rjeSenja. Pristup fundamentalno viseg reda omogucuje
opis razliCitih polja kao kontinuiranih i glatkih funkcija koriste¢i linearnu kombinaciju spline
baznih funkcija. Klasi¢na IGA obicno koristi Galerkin-ov ili kolokacijski pristup koriste¢i B-
spline ili NURBS kao bazne funkcije. Medutim, u ovoj tezi se koristi tre¢i koncept u obliku
izogeometrijske analize kontrolnih volumena (CV-IGA) uz primjenu Fup baznih funkcija koje
predstavljaju beskonacno glatke spline funkcije. Konstruirane su nove hijerarhijske Fup (HF)
bazne funkcije koje omogucuju lokalno hp-poboljsanje tako da zamjenjuju odredene bazne
funkcije na jednom nivou novim baznim funkcijama na viSem nivou gdje imaju manju duljinu
kompaktnog nosaca (h-poboljSanje), ali i visi red (p-poboljSanje). Svojstvo hp poboljSanja je da
omogucuje spektralnu konvergenciju §to predstavlja znacajan doprinos u odnosu na modificirane
hijerarhijske B-splineove koji omoguc¢avaju h-poboljSanje i polinomsku konvergenciju. Dakle, u
dijelovima domene gdje su rjeSenja najzahtjevnija, algoritam koristi bazne funkcije viseg reda s
manjim kompaktnim nosacem, dok u ostalim dijelovima koristi rjedi raspored baznih funkcija
nizeg reda kontroliraju¢i numericku pogresku s definiranom to¢noS¢u. Ucinkovitost 1 tocnost
adaptivnog algoritma provjerena je na nekim od klasi¢nih 1D 1 2D referentnih numerickih

testova.

Kljuéne rijeci: kontrolni volumeni, izogeometrijska analiza, spline bazne funkcije, hijerarhijske
Fup bazne funkcije, adaptivno numericko modeliranje, advektivno-dominantni problemi, lokalno

hp-poboljsanje
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Chapter 1

Introduction

1.1 Overview and motivation

Many industrial and real applicative problems in computational mechanics
have been solved by numerical simulations that require large computational
resources including parallel processing and the use of CPU/GPU clusters.
Therefore, it is of great importance that computer resources are used as effi-
ciently as possible. In parallel with the technological development and use of
powerful computers in solving various engineering problems, there has been
an intensive development of realistic mathematical models in science. Such
models are often expressed as boundary (or initial-boundary) problems de-
tined by a particular set of partial differential equations (PDEs). Since exact
solution of PDE is most often not known, to predict various physical phe-
nomena it is necessary to approximate the problem numerically.

Numerical modeling of such processes typically faces many difficulties,
especially in modeling abrupt localized solution changes using appropri-
ate numerical control. The implementation of these models requires an ef-
ficient numerical analysis and description of all spatial /temporal scales that
describe the solution. Many different numerical approaches and methods
have been proposed in recent decades. In general, each method has its ad-
vantages, but also disadvantages, and none can be singled out as the best for
all problems. The best known and most flexible methods are finite element
method (FEM), finite difference method (FDM) and finite volume method
(FVM) [1]-[9]. There are various other methods such as the spectral element
method (SEM), boundary element method (BEM), discrete element method
(DEM) which, together with various collocation, meshfree and other hybrid
approaches are only practical for limited classes of problems.

Physical laws for space and time dependent problems are usually de-
scribed by partial differential equations (PDEs). For most problems and ge-
ometric shapes of the domain, the corresponding PDE cannot be solved by
analytical methods. Instead, approximate solutions are determined, which
are usually based on different types of discretization. Discretization meth-
ods approximate PDEs by a set of equations of numerical models that can be
solved with numerical methods. The solution of the numerical equations of
the model represents an approximation of the real solution of the PDE.

First, it is important to understand the different forms of PDEs. PDEs



2 Chapter 1. Introduction

can be classified into elliptical, hyperbolic and parabolic types. When solv-
ing these differential equations, it is necessary to specify boundary and/or
initial conditions. The required input parameters can be estimated based
on the type of PDE. Examples of PDEs in each category include the Pois-
son equation (elliptical), the wave equation (hyperbolic), and Fourier’s law
(parabolic). Regarding the interpolation profiles for the discretization of the
governing PDEs, two main approaches have historically dominated in the
field of computational mechanics.

The first and oldest procedure is the finite difference method (FDM). The
starting point of the FDM is to cover the domain with a (mostly uniform)
grid. At each point of the grid, the differential form of PDE is discretized by
approximating the derivatives with expressions of finite differences. These
expressions are generally derived by using Taylor series expansion or poly-
nomial fitting through a certain number of specific neighboring grid points.
Since each point of the grid gives one discretized (algebraic) equation with
several unknowns, the equations of all points must be combined in the sys-
tem and solved simultaneously. The final result of the FDM are the solution
values at the grid points. However, there is no explicit reference how a so-
lution behaves between grid points. In this sense, a FDM can be thought of
as akin to a laboratory experiment, in which a set of instrument readings en-
ables us to establish the distribution of the measured quantity in the domain
under investigation (Patankar [10]). Apart from the fact that the conservative
properties of the equations are generally not preserved, the main drawback
due to which FDM does not have wide application is its limitation to simple
geometries.

The finite volume method (FVM) can be considered a natural improve-
ment of the FDM. In general, the solution domain is divided into an finite
number of non-overlapping control volumes (CVs), and a conservative form
of PDE is integrated over each CV. The volume integrals over the CVs are
converted into surface integrals by the divergence theorem, and interpola-
tion is used to express values at the boundaries of the CV in terms of nodal
(center of CV) values. The FVM is conservative by its construction and its
main advantages are the direct physical meaning of the discretized equations
and a formulation that is also suitable for complex geometries.

The FDM and FVM do not use interpolation profiles in terms of a de-
fined interpolation space, such as trial basis functions space. Rather, they use
local approximation profiles. This local interpolation profiles are not neces-
sarily the same for all terms in the governing equations. Even though this
approach permits complete freedom, as mentioned before, the solution is not
uniquely defined throughout the domain, except for discrete nodal (grid)
points. Moreover, the consequence of using interpolation profiles that are
mostly one-dimensional is usually reduced accuracy for multidimensional
problems. This is particularly true when first-order interpolation is used on
meshes oblique to flow gradients [10].

The second widely used approach to interpolation profiles is the one
adopted in finite element method (FEM). First, the trial vector space of basis
functions is defined, then a linear combination of these functions is used for
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both interpolation and differentiation during the discretization process. One
of the benefits of using FEM is that it offers great freedom in the selection of
discretization, both in the elements that may be used to discretize space and
the basis functions. However, the most widely used basis functions among
the FEM community are Lagrangian polynomials.

The FEM finds its applications in almost all fields of computational me-
chanics. Good approximation properties, ability to handle arbitrary geome-
tries, straightforward construction of higher order approximations on un-
structured grids and strong mathematical background (e.g., Zienkiewicz et
al. [11] and Bathe [12]) are some of the main strengths of the FEM [13]. More-
over, FEM is considered to have best approximation properties when ap-
plied on problems governed by symmetric (self-adjoin) differential opera-
tors. However, presence of convection/advection operators in the governing
equations for fluid flow renders the system of equation to be non-symmetric
and the best approximation property in energy norm, which gave FEM a
success in structural mechanics, is lost. Furthermore, this non-symmetric
character of fluid flow is the main reason for stability issues so special stabi-
lization techniques are needed when FEM is used for simulation of complex
fluid flows. Moreover, absence of the local conservation properties and flux
discontinuities between finite elements are additional weaknesses of FEM.

The numerical solutions produced by FEM are continuous and smooth
inside a particular element. However, usage of classical Lagrangian basis
functions ensures only C° continuity on the element boundaries. Moreover,
the gap between computer-aided design (CAD) for the geometry description
on the one hand and finite element analysis (FEA) for the solution descrip-
tion on the other hand has been long evident. It is estimated that about 80%
of overall analysis time is devoted to mesh generation in the automotive,
aerospace, and ship building industries. In the automotive industry, a mesh
for an entire vehicle takes about four months to create [14]. Furthermore,
once a mesh is constructed, during each mesh refinement a communication
with the CAD system is necessary and since this link is often unavailable
explains why adaptive refinement is still primarily an academic endeavor
rather than an industrial technology.

This gap between CAD systems and FEA (as well as overall numerical
analysis) is due mostly to differences in the used interpolation (basis) func-
tions. Whereas classical polynomials have dominated in the field of numer-
ical analysis, spline-based basis functions (e.g., B-splines, nonuniform ratio-
nal B-splines (NURBS) [14], T-splines [15], hierarchical B-splines (HB) [16]
etc.) play a crucial role in the field of computational geometry. True popu-
larity of spline functions for numerical analysis was achieved by the intro-
duction of the concept of isogeometric analysis (Hughes et al. [14] and Cot-
trell et al. [17]). The main idea of isogeometric analysis (IGA) is to bridge
the gap between FEA to describe a numerical solution and a CAD system
to describe geometry using the same type of spline basis functions for both
systems. The core of IGA is the isoparametric concept (widely used in clas-
sical FEM), where the basis functions used to approximate the solution field
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are also used to describe the geometry. IGA turns this idea in a different di-
rection and selects a basis used to describe geometry in CAD systems as the
basis for numerical approximating of unknown fields. The key difference is
that IGA allows accurate representation of geometry in CAD terms in con-
trast to classical FEA where geometry is only approximated.

IGA is closely related to the meshless or mesh-free methodologies due to
its use of spline basis functions. Application of spline basis functions enables
some properties not seen in FEM, such as exact geometry description, us-
age of higher-order basis functions, higher continuity of solution and geom-
etry, more efficient refinement adaptive procedures and multiresolution ap-
proach. Efficient numerical modeling using spline functions does not always
have to be associated exclusively with IGA involving geometry transforma-
tions, because everything can only be performed in the physical domain. Fur-
thermore, the geometry constraints and boundary conditions can be satisfied
exactly using the Rvachev solution structure method (see Rvachev et al. [18],
Hollig et al. [19], and Kozuli¢ and Gotovac [20]).

The development of adaptive methods [21]-[24] for local refinement and
coarsening became one of the most researched topics within IGA. Since a
fundamental limitation of traditional NURBS is the lack of potential for lo-
cal refinement, several solutions have been derived, such as T-splines [15],
[25]-[30], hierarchical B-splines (HB) [16], truncated hierarchical B-splines
(THB) [31]-[35] and locally refined B-splines (LR) [36]. Furthermore, linear
independence, stability and partition of unity as well as local refinement and
adaptation became center topics for these adaptive solutions.

""","L"*"'!"'”‘— T TR T OOy

BRI e

a) Original mesh b) h-refinement c) p-refinement d) r-refinement
FIGURE 1.1: Refinement procedures

Adaptive isogeometric methods attract a lot of attention and are a very
active field of research. Improvement procedures are h-refinement (Figure
1.1b; spline functions of the same order but smaller knot intervals, i.e. higher
frequencies; changing element size), p-refinement (Figure 1.1c; higher degree
of basis functions), r-refinement (Figure 1.1d; redesigning the mesh without
changing the basis order; keep the number of nodes constant and adjust their
positions) and their combination. Even though B-splines and NURBS are
most commonly used spline technologies in the isogeometric settings, due
to their tensor product structure, they are not well suited to treat localized
phenomena. Hierarchical B-splines (HB) constitute one of the most promis-
ing solutions to easily define adaptive spline base which preserve the non-
negativity of standard B-splines and enables the possibility to properly deal
with local problems. However, since the hierarchical B-spline basis func-
tions in non-rational form do not satisfy partition of unity, it may produce
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ill-shaped control mashes at the refined level. To overcome this deficiency,
the truncated mechanism was first developed by Giannelli et al. [16] for the
hierarchical B-spline basis functions to form a partition of unity and to de-
crease the overlapping of basis functions for better numerical conditioning.

In addition to spline functions, relatively lesser-known atomic or Ry ba-
sis functions have been used in recent times (Rvachev’s basis functions, see
Rvachev and Rvachev [37] and Gotovac [38]). Ry or atomic basis functions
can be placed between classical polynomials and spline functions. However,
in practice, their use as basis functions is closer to splines or wavelets (see
Beylkin and Keiser [39]). Gotovac [38] systematizes the existing knowledge
about atomic basis functions and transforms them into a numerically appro-
priate form. Kozuli¢ [40] and Gotovac and Kozuli¢ [41] showed the basic
possibilities of using these functions in structural mechanics and numerical
analysis. The use of Fup basis functions, as the most commonly used atomic
basis functions, has been shown to solve the problem of signal processing
(see Kravchenko et al. [42]), the initial problem (see Gotovac and Kozuli¢ [43])
and the boundary problems using the non-adaptive Fup collocation method
(see Kozuli¢ and Gotovac [44] and Gotovac et al. [45]).

Gotovac et al. [46] presented a true multiresolution approach based on the
Adaptive Fup Collocation Method (AFCM). The heart of the AFCM method-
ology lies in the Fup basis functions in conjunction with the collocation pro-
cedure. However, the main drawback was the lack of global and local mass
balance due to the properties of the collocation framework, computationally
expensive head solution to obtain an accurate velocity field without numeri-
cal oscillations for high heterogeneity cases and inability to describe the gen-
eral irregular geometry. Applications of the AFCM have been shown for the
analysis of the flow and transport in heterogeneous porous media relating to
the travel time statistics Gotovac et al. [47]. Brajcic Kurbasa [48] presented
atomic basis functions of the exponential type. For the first time, the prop-
erties of exponential ABFs were investigated in detail and expressions for
calculating the value of the function and all necessary derivatives at an ar-
bitrary point of the domain were derived, as well as some features neces-
sary for their practical application in a form suitable for numerical analy-
sis. Malenica [49] used Fup basis functions as representative members of the
spline family in the development of a novel numerical model for groundwa-
ter flow in karst aquifers. Futhermore, it also presents the development of
a full space-time adaptive collocation algorithm with particular application
to advection-dominated problems while Kamber et al. [50] set foundation for
adaptive spatial procedure using Fup basis functions with control volume
formulation.

1.2 Hypothesis

The main objective of this thesis is to demonstrate the capabilities of spline
basis functions through the development of novel numerical method with
specific application to problems with highly localized steep gradients while
controlling spurious numerical oscillations. Emphasis is given to Fup basis



6 Chapter 1. Introduction

functions (Rvachev and Rvachev [37] and Gotovac and Kozuli¢ [41]) as rep-
resentative member of the spline family. The Fup function can be obtained by
a convolution procedure using contracted B-splines and infinitely derivable
up atomic function. In this way, Fup is closely related to B-spline. However,
Fup basis functions have better approximation properties compared to the B-
splines due to the convolution with the up function containing all orders of
polynomials by parts and infinite continuity. Due to this property, adaptive
procedure using Fup basis functions should allow much more accurate so-
lutions compared to adaptive solutions obtained by B-spline basis functions.
The particular contribution of this thesis lies in the property of hierarchical
Fup basis functions, in relation to B-splines, enabling local hp-refinement,
which means that higher resolution levels have basis functions not only of
smaller length of the compact support (higher frequencies; h-refinement) but
also contain basis functions of higher order (p-refinement). Thus, the basic
hypothesis behind the proposed method is to obtain spectral convergence
for problems with highly localized steep gradients, while the existing hier-
archical B-splines (HB) and truncated hierarchical B-splines (THB) achieve
convergence determined by the degree of the polynomial of the basis func-
tions.

This work can be considered as an upgrade of the previously developed
adaptive Fup collocation method (AFCM,; [51]). The main idea of the AFCM
is to dynamically adapt the computational grid during the simulation so that
the algorithm uses more collocation points (i.e., higher resolutions) only in
areas where the solution changes are demanding (e.g., localized step gradi-
ents or discontinuities). Furthermore, formulation of control volumes was
used in numerical modeling of groundwater flow in karst aquifers Malenica
[49] and Malenica et al. [52], and was shown to contain several interesting
properties such as: local and global conservation properties, direct physi-
cal meaning of the discretized equations, very close to Gallerkin’s solution
for much lower computational costs, and increased accuracy and stability in
relation to the aforementioned collocation method. Therefore, in this thesis
for the first time the hierarchical Fup basis functions (one-dimensional and
two-dimensional) with control volume formulation will be presented.

Due to certain similar properties with classical IGA [14], [17], used
method is called control volume isogeometric analysis (CV-IGA) [49], [52].
However, since classical isogeometric analysis mostly uses B-spline or
NURBS basis functions in conjunction with the Galerkin [8] or collocation
formulation, here, the proposed model will be based on Fup basis functions
and the control volumes formulation enabling local and global mass conser-
vation, as well as approximate solutions of higher smoothness. The appli-
cation of CV-IGA to real application problems will be presented in the latter
part of the thesis.

The main goal of this thesis is to develop hierarchical Fup basis functions
(HF) and to use good approximation properties of these functions in creating
new adaptive technique within control volume isogeometric analysis (CV-
IGA) for numerical solutions of engineering problems arising in the field of
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structural mechanics and fluid mechanics. The formulation of control vol-
umes would allow for local and global conservation properties, with com-
putational costs that are between Galerkin (high CPU price) and collocation
(low CPU price).

The developed adaptive algorithm will be applied in solving demand-
ing engineering problems. First, an analysis of the 1-D problem will be
performed starting with the approximation of the known function to show
some basic parameters of the adaptive algorithm. Then, on the example
of the advective-dispersion equation (ADE), the efficiency of new adaptive
method will be presented through numerical solving of the differential equa-
tion when in most cases we do not know the analytical solution. In particu-
lar, a comparison with analogous h-adaptive procedures based on IGA and
hierarchically modified B-splines will be shown. Furthermore, the method
is extended to 2-D analysis and verified on problems such as mass and en-
ergy conduction (heat) generally shown with the diffusion and advection-
dispersion equation, the elasticity problem, and in solving Poisson equation.
A comparison of numerical results obtained with hierarchical B-splines and
the achievement of spectral convergence obtained with the novel numerical
procedure will be shown.

1.3 Qutline

Chapter 2 provides the background of the classical numerical methods such
as finite difference method, finite volume method and finite element method.

In Chapter 3 the mathematical background of the spline basis functions is
provided with addition of the less known Fup basis functions that belong to
the class of atomic functions and can be regarded as infinitely differentiable
B-splines. Furthermore, a detailed description of Fup basis functions and
their relationship with B-splines is given.

Chapter 4 addresses the isogeometric (IGA) approach with addition of
the three numerical formulations: Galerkin, Collocation and Control volume.
Two of those formulations can be regarded as classical IGA formulations,
more specifically Galerkin and Collocation formulations are usually used for
spatial discretization. However, here a novel control volume IGA formula-
tion is presented in addition to two classical IGA formulations. The concept
of IGA is presented as a unified framework for a multi-scale description of
the geometry and solution fields, where all approximated fields are repre-
sented as continuous and smooth functions.

In Chapter 5, hierarchical spline functions, i.e. hierarchical B-spline basis
functions, are presented with its refinement procedures. Since the hierarchi-
cal B-spline basis functions in non-rational form do not satisfy partition of
unity, the truncated mechanism was introduced to overcome that deficiency.
In addition to hierarchical B-splines, more efficient truncated hierarchical B-
splines procedure is presented.

Chapter 6 presents the development of the novel adaptive algorithm that
is based on Fup basis functions that belong to the class of atomic func-
tions. Hierarchical Fup (HF) basis functions that have the option of local
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hp-refinement such that they can replace certain basis functions at one res-
olution level with new basis functions at the next resolution level that have
a smaller length of the compact support (h-refinement) but also higher or-
der (p-refinement) is presented in detail. Satisfying the boundary conditions,
adaptive criteria and various stabilization methods are also described.

Chapter 7 presents the numerical results confirming efficiency of the de-
veloped method (described in Chapter 6) applied to some of the classical
numerical problems such as advection-dispersion problem, heat conduction
problem, linear elasticity problem, etc.

Finally, Chapter 8 summarizes the most important findings of the thesis
and provides suggestions for future research.



Chapter 2

Classical numerical methods

This chapter serves as review of some classical numerical methods prior in-
troduction of the isogeometric analysis. Furthermore, the first examples of
adaptive numerical modeling were focused upon using classical numerical
methods such as finite difference (FDM), finite element (FEM) and finite vol-
ume methods (FVM) [1]-[9].

2.1 Finite difference method

The finite difference approximations for derivatives can be considered as one
of the simplest and of the oldest methods to solve differential equations.
Their development was stimulated by the emergence of computers that of-
fered a convenient framework for dealing with complex problems of science
and technology. The main idea of FDM is focused on approximating differen-
tials. The domain is partitioned in time and in space and approximations of
the solution are computed at those points (time and space points). The differ-
ence between the exact solution and the numerical solution is determined by
the error that is committed by going from a differential operator to a differ-
ence operator. This error is called the discretization error or truncation error,
reflecting the fact that a finite part of a Taylor series is used in the approxi-
mation. In contrast to this, weighted residual methods evaluate the integral
of a differential equation while optimizing an approximation such that the
integrals of the approximated solutions and the correct solution match on a
given domain.

Let us consider one-dimensional case for simplicity. The main concept be-
hind any finite difference scheme is connected to the definition of the deriva-
tive of a smooth function u at a point x € IR:

, + Ax) —u(x)
o) — lim ™ (x
' (x) Ax=0 Ax

(2.1)

and to the fact that the quotient on the right-hand side provides a “good”
approximation of the derivative when Ax tends to the 0. In other words,
to get a good approximation Ax needs to be sufficiently small. Moreover,
the approximation is good when the error committed in this approximation
tends towards zero when Ax tends to zero. If the function u is sufficiently
smooth in the neighborhood of x, it is possible to quantify this error using a
Taylor expansion. The most common equations are:
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Backward finite difference schemes for approximating first derivatives

du  u(x)—u(x—Ax)
== . +0 (Ax) (2.2)

Central finite difference schemes for approximating first derivatives

du  u(x+Ax)—u(x—Ax)
dx 2Ax

+0 (sz) (2.3)

Forward finite difference schemes for approximating first derivatives

du _ u(x+Ax) —u(x)
dx Ax

+0 (Ax) (2.4)

Central finite difference schemes for approximating second derivatives

d?u  u(x+Ax) —2u (x) +u(x — Ax)
dx? Ax? +0 (sz) (25)

where the term O (Ax) in (2.2) and (2.4) indicates that error of the approxi-
mation is proportional to Ax and analogously the term O (Ax?) in (2.3) and
(2.5) indicates that error of the approximation is proportional to Ax?.

The finite change of the solution is approximated on a very small finite
interval using one of these equations. All of these equations are linear which
means that the solution is linearly approximated.

Discretization error
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FIGURE 2.1: Treatment of complex geometries with FDM

The main advantage of FDM is the fact that it is a very exact method
with solutions usually significantly closer to the solution, in comparison to
results obtained from, e.g., weighted residual methods. However, there are
several disadvantages. The most severe disadvantage is the requirement for
structured grids because it usually does not cope very well with complex
(Figure 2.1) or multi-scale geometries and is computationally very expensive.
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Furthermore, FEM and FVM have significantly less strict requirements on
grid structuring and allow locally adapting the grid to suit the local geometry
which gives the main advantages of both methods in comparison with FDM.

However, many differential equations involve time-dependency, which
gives rise to a time-dependent differential, finite difference schemes becomes
essential for both FEM and FVM. Many numerical solvers will use FEM and
FVM to solve the space-dependent terms of a differential equation and then
use one of the previously mention schemes (backward finite, central finite or
forward finite) to step in time. Obviously, the main solution of the differential
equation is then obtained using a combination of FVM or FEM for the space-
dependent terms and FDM for the time-dependent terms.

2.2 Finite volume method

The next method that will be presented is the finite volume method that can
be considered as a natural improvement of FDM. FVM can be used on all
differential equations, which can be written in divergence form (the equation
is written using divergence operators).

Generally, the calculation domain is subdivided into an finite number of
nonoverlapping control volumes (CVs) such that there is one CV surround-
ing each node (see Figure 2.2), and the conservative form of the governing
PDEs is integrated over each CV. Gauss theorem is usually applied to con-
vert the volume integral over the divergence into a surface integral across
the boundaries. Thus, the integral is therefore turned from integrating the
differential of the dependent variable inside of the cells into surface integrals
of the fluxes of the dependent variable across the boundary of the cells. This
substantially simplifies the differential equation. The interpolation is used to
express the values at the CV boundaries in terms of nodal values. Again, like
in FDM, the final results are the solution values at the nodal points. Since dif-
ferent interpolation profiles can be used for different expressions that occur
in the governing equations, there is no explicit reference for the variation of
the solution between the nodal points.

Approach used within FVM is based on the concept that all mass that
would “diverge” out of the CV must inherently pass the boundary of the
CV at some time, and if this flux is integrated over time, the total change of
mass in the CV can be derived. Moreover, a conservation approach of the
dependent variable is obtained by monitoring the fluxes of the dependent
variable across the boundary of the cells.

Example Consider one-dimensional heat conduction equation governed
by

of

o ~CAT=0 (2.6)
where ¢ is a positive constant (thermal conductivity) which can be thought
of as a “diffusion coefficient” for heat and T describes the temperature func-
tion along a one-dimensional domain.

2
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FIGURE 2.2: 2D computational domain subdivided into an fi-
nite number of nonoverlapping CVs

In order to obtain the conservative form of (2.6) we need to integrate this
equation over the control volume resulting in

2
dCV / Cza ~dCV =0 2.7)

Now we can exchange the differential and the integral of the first term
on the left-hand side, because our control volume is fixed in space and not
dependent on time. Moreover, this allows us to convert the partial into a
regular differential. Second, we can use Gauss theorem to convert the volume
integrals into surface integrals. Doing this, we can rewrite (2.7) to

o / TdCV — / c ndacv_o 2.8)
oCV

where dCV represents boundary of the domain and 7 is the outward unit
normal to the boundary.

In general, after writing governing equation in differential notation it be-
comes valid for every point in the computational domain. Moreover, if we
work on the differential form, we would obtain an FDM problem that can be
solved if we take into account CV of infinitesimally small lateral size. How-
ever, as presented in section 2.1, FDM is computationally very expensive be-
cause it would require a large number of CVs with very small lateral size in
order to obtain exact results. It would be desirable to increase the control
volumes to larger volumes and that is exactly what is being done in FVM.
The reason the FVM allows work with a larger CV is that it does not approx-
imate the changes of the dependent variable along the control volume, but
performs a conservation of the dependent variable for each CV. This allows
the calculation of the average value for the dependent variable within the
cell after which the CV is replaced by one value. It is obvious that if we take
a CV of larger dimensions, the more “averaged” solution will become. For



2.2. Finite volume method 13

example, finer features of the solution such as spikes in concentration will
not be visible anymore because they are blurred by the averaging process.
Because of that averaging process, FVM is surprisingly stable against large
changes and discontinuities in the dependent variable. However these tend
to be problematic for FDM because at discontinuities a function usually has
no derivative, so FDM in these locations cannot approximate values.
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FIGURE 2.3: Cells used in FVM. a) A two-dimensional compu-

tational domain showing the typical quadrangles. At locations

where large changes in the dependent variables are expected,

the resolution is higher. b) A three-dimensional uneven hex-

aeder with the unit normal vectors facing the respective neigh-
boring cell.
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The most important implication for the volume discretization of our com-
putational domain, because FVM requires the dependent variable to be in
conservative form, is the fact that the discreet volumes must remain fixed in
space. These volumes are referred as cells in contrast to the term “elements”,
which is the term used in finite element method. In two-dimensional do-
main, cells are quadrangles (not not necessarily squares; see Figure 2.3a), and
in three-dimensional space they are six-face hexaeder (see Figure 2.3b). These
cells i.e., shapes are adapted to the discretization of the volume and should
be designed in such manner that they allow a good resolution of the compu-
tational domain. This is important especially in areas which are expected to
show large changes of the dependent variables.

Another important point to consider is the fact that the shape of the cells
can be adapted to suit the geometry of the environment. This is in contrast
to FDM, which usually requires the control volumes to be equally shaped
[53]. Furthermore, the most attractive feature is that the resulting solution
implies that the integral conservation of quantities such as mass, momentum,
and energy is exactly satisfied over any group of used control volumes (lo-
cal conservation) and, of course, over the whole calculation domain (global
conservation). This property is valid for any number of grid points [10].
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2.3 Finite element method

Third method is by far one of the most commonly used method in numerical
analysis. Finite element method (FEM) was originally developed for solving
problems in solid-state mechanics, but it has since found wide application in
all areas of computational physics and engineering, as well as in computa-
tional fluid dynamics (CFD). The main difference compared to the previous
two methods (FDM and FVM) is that FEM is governed by the principle of
minimization of energy i.e., it uses variational formulation of the problem.
In other words, when a particular boundary condition (like force or displace-
ment) is applied to a body, leading to a several configurations for that body,
only that configuration where the total energy is minimum is the one that is
achieved.

The basic concept underlying the FEM is relatively simple. It can be
thought of as splitting the computational domain into very small but finite-
sized elements of geometrically simple shapes (see Figure 2.4). The word “fi-
nite” is used to describe the limited, or finite, number of degrees of freedom
used to model the behaviour of each element. The elements are assumed
to be connected to one another, but only at interconnected joints, known as
nodes. It is important to note that the elements are small regions, not sep-
arate entities like bricks, and there are no cracks or surfaces between them.
The next step is to solve system of equations, mathematically represented
by governing PDEs that describe the physics of the problem, and formulate
these equations for each finite-sized element. This is solved by approximat-
ing the fields within each element as a simple function with a finite number of
degrees of freedom (DOF). By stitching the individual solutions i.e., the con-
tribution from all elements are assembled and a large sparse matrix equation
system is solved, a global solution can be obtained.

FIGURE 2.4: Hat-function on a triangulation.
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The first step of FEM is the discretization i.e., the process of represent-
ing a component as an assemblage of finite elements of the computational
domain. In FEM the complete set, or assemblage of elements, is usually re-
ferred to as the mesh and the support points of the solution are referred to
as nodes. Moreover, because the two-dimensional FEM prefers triangles (see
Figure 2.4) and the tree-dimensional FEM prefers tetrahedra as the smallest
unit in the mesh for the most applications, since they can be adapted more
easily to complicated boundaries, this procedure is also called triangulation.
In general, the choice of nodes should match the complexity of the computa-
tional domain in a sense that the curvatures of the domain are approximated
as closely as possible. Furthermore, regions where the expected solution will
have steeper gradients i.e, more localized solution should be more finely re-
solved than regions where small changes are expected.

Another important property of FEM is that it uses linear combination
of basis (shape) functions for both interpolation and differentiation during
the discretization process. Because of that, the final solution is uniquely de-
fined throughout the whole computational domain, unlike in FDM and FVM
where the solution is not uniquely defined throughout the domain, except for
discrete nodal (grid) points. The most widely used basis functions among the
FEM community are Lagrangian polynomials. The same functions that are
commonly used to construct test (weighted) functions are also used for ge-
ometry mapping through the isoparametric concept. In general, solution
in FEM is represented by linear combination of Lagrangian basis functions in
form

N
= Z Dé]q)] (2.9)
j=1

where «; are unknown coefficients and ¢; are basis functions. In case of mul-
tidimensional basis functions they are simply constructed using the tensor
product of one-dimensional basis functions.

2.4 Collocation method

The forth method that will be presented is collocation method. It is used for
solving integral and differential equations in which the approximate solution
is determined from the condition that the equation is satisfied at certain given
points (collocation points). It belongs to one of the two special cases of the
method of weighted residuals, the second one is Galerkin method.

Method of weighted residual is based on finding undetermined coeffi-
cients by minimizing residual while approximating the desired function u.
The desired function u is replaced by a finite series approximation

N
U= thj(pj (2.10)
j=1

where the set of functions ¢j,j =1,2,..,N can be defined over both the time
and space domain, and aj,j = 1,2,..,N are unknown i.e., undetermined
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coefficients. In the FEM, the functions ¢; are selected to be polynomials that
satisfy certain boundary conditions set by the problem, and are variously
denoted, depending upon the area in which the method is applied, as shape
functions, basis functions or interpolation functions.

After substituting the assumed solution 7 into the PDE of the form

Lu—f=0 (2.11)

where f is a known function, and L denotes differential operator involving
spatial derivative of u, results in

Li—f=R (2.12)

where R is a measure of error commonly referred to as the residual. Since the
assumed solution is only approximate, in general it does not satisfy the dif-
ferential equation that results in an error or what is usually called “residual”.
The residual is then made to vanish in some average sense over the entire
solution domain to produce a system of algebraic equations. The objective
is to find the unknown coefficients «; such that residual R is minimized. A
straightforward scheme would be to set the integral of residual to zero. But
before that, we must introduce weight functions w;,i = 1,2, ..., N so that in-
tegral

/R(x)wi(x)t;lD —0, i=1,2,.,N (2.13)
D

could be solved over the domain D for the N unknown coefficients. Equation
(2.13) is the general equation describing the method of weighted residual.
This paved the way for a multitude of schemes that emerged from this one
expression through the definition of the weighting functions w;(x). Three
schemes that are most commonly encountered in engineering practice are the
Galerkin, subdomain and collocation. The Galerkin method uses the weight-
ing functions to be the same as the basis functions, as defined in (2.10). In the
subdomain method, the weighting function is set to be unity in the subdo-
main D; and zero elsewhere, i.e.,

1 x € Q)
w;i(x) = {O < Q) , Qe Q. (2.14)

However, the collocation method is the simplest to implement. Here, the
weighting function w;(x) is chosen to be the Dirac delta. The Dirac delta
function belongs to the class of generalized functions. It can be set in differ-
ent ways, and the simplest and physically justified way is to interpret Dirac
function as an impulse function.

Figure 2.5 shows the impulse function I, which has the property of be-
ing intense on the interval [—a, a] with an intensity value of %, and outside
the interval it is equal to zero. Moreover, the value of the integral can be
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FIGURE 2.5: Impulse function

calculated as
o0

‘/‘Lxx)dx:: 1 (2.15)

—00

Dirac delta function is special case of impulse function,

d(x) = lig}) I(x) (2.16)

with properties,
a@:{i ijg (2.17)
/5uwx:1 (2.18)

and a particularly important property

o0

/fuwu—xmmzfug (2.19)

—00

Following this it can be concluded that the collocation method corresponds
to the choice of the weighting functions as Dirac functions at the collocation
points

w; = 51' = 5(3( - xi) (220)

Collocation method requires no integration in the numerical procedure
and generates the N equations required to evaluate the undetermined un-
known coefficients ;. As might be expected, the accuracy of this scheme
depends heavily on the location of the collocation points.
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2.5 Other methods

Previously mentioned methods are by far most used numerical methods with
strong mathematical background and a wide range of applications in engi-
neering problems.

However, of the aforementioned methods, FEM and FVM can be thought
as the most popular and versatile discretization techniques. Methods such
as FDM, discrete element method (DEM), boundary element method (BEM)
which together with various meshfree, collocation and other hybrid ap-
proaches are practical only for limited types of problems. There are various
other methods such as the spectral methods, belongs to the variational meth-
ods, that are especially adapted to the approximation of smooth solutions but
are limited to simple geometries and methods using wavelets basis.

A DEM, also called a distinct element method, is an explicit numerical
model which approximates the mechanical behavior of an assembly of arbi-
trary shaped particles. Simulation of millions of particles on a single proces-
sor became possible due to the advances in computing power and numerical
algorithms for nearest neighbor. Because of that DEM is becoming widely
accepted as effective method for solving problems in granular flows, rock
mechanics, discontinuous materials (see [54]). One of the main problem of
the DEM is that it is relatively computationally intensive, which limits either
the number of particles or the length of a simulation. As such, the DEM has
become accepted and widely used to model the mechanical behaviour and
flow of particulate geomaterials.

Idea behind the BEM is that we can approximate the solution of the PDE
by looking at the solution to the PDE on the boundary and then use that infor-
mation to find the solution inside the computational domain. In other words,
the approximate solution obtained by BEM of the PDE is an exact solution of
the differential equation in the domain and is parametrized by a finite set
of parameters living on the boundary. In order to develop the boundary ele-
ment method however, it is necessary first to formulate an equivalent bound-
ary integral equation to the governing equation [55]. It is very useful when
domains are very large where for example a FEM approximation would have
too many elements to be practical. There are several advantages but also dis-
advantages of using BEM over other numerical methods like FEM or FDM.
Only the boundary of the domain needs to be discretized, especially in two
dimensions where the boundary is just a curve. The solution in the inside
part of the computational domain is approximated with a rather high conver-
gence rate. The physically relevant data, in some applications, are given by
the boundary values of the solution or its derivatives and not by the solution
in the interior of the domain. However, boundary integral equations require
the explicit knowledge of a fundamental solutions of the differential equa-
tion which is not always available, only for linear PDE with constant or some
specifically variable coefficients. Furthermore, if the boundary is not smooth
but has corner and edges, or if the boundary conditions are discontinuous,
e.g. in mixed boundary value problems, the solutions of the boundary value
problem will have singularities at the boundary.
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Spline basis functions

This chapter provides the mathematical background for two representative
members of spline functions used in this work. The chapter starts with de-
scription of B-splines and NURBS followed by a description of up and Fup
basis functions. Here, the procedure using the convolution theorem is pre-
sented for construction of the Fup functions that clearly demonstrates their
close relationship to B-splines.

3.1 B-spline

Piecewise polynomial approximations are fundamental to many applica-
tions, but it is not straightforward to join the polynomial segments smoothly
while keeping local flexibility. However, B-spline basis functions handle the
smoothness constraints in a very elegant fashion and provide the base with
great numerical properties.

The B-spline basis functions parametric space is local to “patches” rather
than elements. In one dimensional domain, a knot vector is a set of non-
decreasing real numbers representing coordinates in the parametric space of
the curve

= {Cl/ 621 e gn—l—p—l—l} (31)

where ¢; is the i-th knot, i is the knotindex, i = 1,2, ..., n 4+ p 4 1, p is the poly-
nomial order of the B-spline, and # is the number of basis functions which
comprise the B-spline. The interval [(jl,é‘n+p+1} is called a patch. If knots
are equally-spaced in the parametric space, they are said to be uniform, and
non-uniform otherwise. More than one knot can be located at the same coor-
dinate in the parametric space, and are referred to as repeated knots. A knot
vector is said to be open if its first and last knots appear p 4 1 times.

The simplest example of an algebraic B-spline is the B-spline of the zero

order By (¢):
Bo(£) = {1 gel-1/2,1/2] 62

0 elsewhere

whose Fourier transform (FT) can be obtained in the following manner:

i ~ e sin (t/2)
fol#) :_/ B (¢) - ¢ i - 1//2 Locos(t-g) dt =05 (33)
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Since By(&) (in the form (3.2)) has discontinuities in the points { = +1/2,
for practical application it can be expressed as a continuous function by the

[ee]

inverse FT. Applying the integral operator ,- [ e "%dt on the right-hand

T
side of the expression (3.3), FT is transformed into the function itself, i.e. into
algebraic spline By(¢):

[ee]

1 sin (4/2) iz

— 00

Considering uniform distribution of the knots, B-splines of the n-th order
according to thelaw - ¢y =k — (n+1) /2,k=0,1,...,n + 1, can be presented
as:

n+1 n
Bu(E) = 1 L (-1 Ch - (£+ 5% ) 35)

0
o +

where Ck are binomial coefficients:

4= () - oo

For example, B-splines up to the second order can be presented according
to (3.5) as follows:

By (&) = (E+1/2)% — (—1/2)
Bi(§)=(E+1)} —2(0)} + (-1} (3.7)
By (g) = [(26+3)2 —3(28 +1)1 +3(26 — 1)} — (26 —3)1| /8

Figure 3.1 shows that the compact support of B, (¢) consists of (n + 2)
knots and (# + 1) unit characteristic intervals. Moreover, B, (¢) is presented
by the local polynomial of the n-th order on each interval [k, Cx11] . For in-
stance, By (¢) has four knots and three characteristic intervals. Furthermore,
by increasing the B-spline order, the length of its compact support also in-
creases, and when n — oo, the length goes to infinity. The coordinate {7 is
called the vertex of the basis function (point with maximum function value)
and serves as the origin for the shifting of the basis functions along the ¢
axis by the length of the characteristic interval. Figure 3.2 presents the cubic
B-spline B3 (¢) with the first three derivatives.
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FIGURE 3.1: B-splines: B, (¢), n =0,1,2,3.

Figures 3.1 - 3.3 presents the connection between B-splines and their
derivatives. The first derivative of B3 (¢) can be presented as linear com-
bination of contracted and shifted B, (§). Furthermore, the second deriva-
tive of B3 (¢) can be presented as a linear combination of contracted and
shifted B (¢), and so on. Finally, each i-th derivative of B, ({) is a linear
combination of the contracted and shifted B,,_; (¢).



22 Chapter 3. Spline basis functions
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FIGURE 3.2: B3 (¢) with its first three derivatives.

Following the mentioned properties, B, ({) can be presented by convolu-
tion in the following form:

Bu(§) = [ Buor (6 1) Bo(t) at (3.8)

or:

Bu(¢) = Bu-1(¢) * Bo(§) = Bo(&) * ... x Bo(¢) (39)

~

(n+1) times

where 7 is the order of the B-spline and By (¢) is given by (3.2). The convolu-
tion theorem states that the Fourier transform (FT) of B, ({) can be expressed
as a product of (n+1) particular FI’s of By (¢) according to (3.9):

sint/2> n+l

£ = (%172 310
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so the inverse FT of B, (&) analogous to the expression 3.4 is defined by:

1 Y sin (t/2) ntl it

Equation (3.9) implies that the support of B, (&) is the union of the (1 + 1)
characteristic intervals A¢. Figure 3.3 shows generation of B-splines accord-
ing to (3.9) and the convolution theorem.

A [
By(§ —1) By(t)
¢
-
o T —-—
- 10 112 0 112 it
A . A
By(§ —1t) B,(t)
/’]_;-\\\
T T |'I.D| T T T T T T T T] T T T | T T 0 | ‘;' T T T T T T ft_-_
1__
—_ 10 -3/2 -1/2 112 32 ¢t

FIGURE 3.3: Generation of By(¢) using the convolution theo-
rem.

Furthermore, this is not the only way to express B-splines. Having in
mind knot vector, defined in the beginning of this section, B-spline basis func-
tions are defined recursively (see Cottrell et al. [17]) starting with piecewise

constants (n = 0):
1T ¢ <d<Gim
B.o(&) — 3.12
1’0(6) {0 elsewhere ( )

and for n > 0, B-splines are defined by
Bin(®) = =SB a(§) + S B, (), G
Gitn — Gi Citnt+1 — Git1

Figure 3.4 presents B-spline basis functions for n = 0,1,2 on a uniform
knot vector. An interesting fact is that standard piecewise constant and linear
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finite element functions are the same for n = 0, 1. However, for higher-orders
of B-spline basis functions they differ from their FEA counterparts.

BI,O 1 B1,1
00— >3 4 5° 0% 1 2 3 4 5°
B2,0 1 B2,1
00— >3 4 5° 0% 1 23 3 4 5°
B3’0 1 B3,1

O—4 =2 3 4 5> 0 1 2 3 4 5%

1 Bl,Z

Og 1 > 3 4 565

1 B2,2

00— o3 4 56

1 B3,2

Og i >~ 3 4 56

FIGURE 3.4: Basis functions of order 0, 1, and 2 for uniform knot
vector 2 = {0,1,2,...}.

Finally, we can summarize the properties of the B-splines basis functions
as follows:

1.

B,-spline is positive on 1 + 1 characteristic intervals and vanishes out-
side this interval i.e., B-splines have compact support where they have
strictly positive non-zero values; elsewhere, they are zero, implying lo-
calized approximation properties.

. By-spline is (n — 1)-times continuously differentiable with discontinu-

ities of the 7n-th derivative.

. A linear combination of shifted B,-splines by a characteristic interval

describes algebraic polynomials up to the n-th order.

. A linear combination of m shifted B-splines by a characteristic interval

describes a unit constant function (“partition of unity”), that is

(3.14)

. By-splines can be presented by a linear combination of the shifted B-

splines of the same order but using two-times-smaller support. This
implies that B-splines support multiresolution analysis and efficient
adaptive numerical procedures (e.g., [21]-[25], [31]-[34]). This can be
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highlighted as the most interesting, since a hierarchical Fup basis func-
tion (following the properties of Fup basis functions) will be developed
based on this property.

3.2 NURBS

Just like in classical finite element analysis (FEA) B-spline curves in R? are
constructed by taking a linear combination of B-spline basis functions. Many
properties of B-spline curves follow directly from the properties of their basis
functions. Here, the basis functions vector-valued coefficients are referred
to as control points. These control points are somewhat identical to nodal
coordinates in FEA by being the coefficients of the basis functions but the
non-interpolatory nature of the base does not lead to a concrete interpretation
of the values of the control points. Piecewise-polynomial B-spline curve can
be described using m basis functions B;,,i = 1,2,...,,m, and corresponding
control points P; € RY,i = 1,2, ..., m by

C(§) = )_Bin(5)P; (3.15)

where index i in P; is not a reference to one of its d components, rather serves
to identify the control point. Hence, a B-spline curve in essence is a mapping
from a one dimensional parametric space to physical space. Control polygon
is given by piecewise linear interpolation of the control points. Interesting
property of the B-splines is the ability to intuitively change their shape by
adjusting the control points. This power is used within Non-Uniform Ratio-
nal B-splines (NURBS), by constructing a basis for the NURBS space from
knot vectors and to build curves, surfaces and solids from linear combina-
tions of basis functions and control points. In that view, everything that has
been defined i.e., that applies to B-splines, also applies to NURBS. NURBS
can be thought as extension of B-splines by associating a weight with each
control point. For designers, NURBS are interesting for obtaining more con-
trol of the represented curve without increasing the number of control points
or increasing the degree. Moreover, it also represent exactly some curves
with conic sections, such as circles and ellipses.

NURBS are mathematical representations of 3-D geometry that can ac-
curately describe any shape from simple 2-D line, arc, or curve to the most
complex 3-D organic free-form surface or solid. Because of their general-
ity, flexibility, accuracy, i.e., excellent properties NURBS models are the most
popular representation method in CAD.
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Control point
Control polygon

Curve

Knot

(@) (b)

FIGURE 3.5: NURBS geometries. (a) NURBS curve; (b) NURBS
surface.

NURBS curves and surfaces (see Figure 3.5) are generalizations of both
B-splines and Bézier curves and surfaces, the primary difference being the
weighting of the control points (red squares in Figure 3.5), which makes
NURBS curves rational.

NURBS basis is given by

Bin(G)wi _ Bin(S)wi

Ri() = i
MO E B

(3.16)

where W (() is weighting function, B, ,,(¢) is the standard B-spline basis func-
tion and w; is referred to as the weight factor. Using (3.16) in conjuction with
the NURBS curve control points

(P); = =14 (3.17)

C(@) = Y RI@)P @.18)

where (P;) jis the j component of the vector B;. Note that (3.18) is identical
form to that for B-splines.

Weights play an important role in defining the basis, but they are divorced
from any explicit geometric interpretation in this setting, and we are free to
choose control points independently from their associated weights. Also note
that if the weights are all equal, then R?(¢) = B;,(¢) and the curve is again
a polynomial. Thus, B-splines are a special case of NURBS [17].



3.3. Atomic basis functions 27

Some of the great qualities that makes NURBS ideal choice for computer-
aided modeling are as follows:

1. have a well-known and a precise definition (one common mathematical
form) that can accurately represent both standard geometric objects like
lines, arcs, ellipses, etc., and free-form geometry like car bodies and
human bodies.

2. the amount of information required for a NURBS representation of a
piece of geometry is much smaller than the amount of information re-
quired by simpler methods

3. can be evaluated reasonably quickly by numerically accurate and stable
algorithms.

3.3 Atomic basis functions

Fup basis functions belong to the class of atomic functions (see [37],[41]) and
span vector space of algebraic polynomials, while their properties are closely
related to the B-splines, as will be explained in the sequel.

Atomic basis functions (ABF) are infinitely derivative solutions of func-
tionally differential equations in the form

M
Ly(x) =AY Cey(ax — by) (3.19)
k=1

where L is a linear differential operator with constant coefficients, A is a non-
zero scalar value, Cy are coefficients of the solutions, a > 0 is the support
length parameter of the finite function, by are the coefficients that determine
the shifts of the finite basis functions. The type of the finite function from
the class of atomic basis functions is determined by the choice of the opera-
tor L in (3.19). Thus, we distinguish atomic basis functions of the algebraic,
exponential and trigonometric type.

One way to obtain up(¢) function, the simplest and basic atomic func-
tion, is by contracting By(¢) (see Eq. 3.2) to half the length of the compact
support (hy/2) and thus obtaining another member of the convolution, then
contracting it again to half the length of the compact support (/19/4) obtain-
ing the third member of the convolution and so on, i.e. following convolution
procedure:

up (&) =Bo (&) Bo (28) + -+ B (2¢) #---+By (2°¢)  (320)

Applying Paley-Wiener theorem (see [56]) in form [* By(2K&)dE = 1, it
follows that the ordinates of each subsequent member in (3.20) are doubled:

2k C c [_2—k—1,2—k—1]

k=0,1,...,00. 3.21
0 elsewhere * ( )

By(27) = {
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The function up (¢) is obtained by an infinite number of convolutions of the
contracted By (&) with compact support 2% and vertex value 2* (see Eq.
3.20), as shown in Figure 3.6. According to (3.20), the compact support of
up (¢) is the union of an infinite number of finite intervals. However, its
compact support is finite:

hyp=)Y —==2 — supp up (&) =[~1, 1] (3.22)

Rvachev and Rvachev [37] proved that the length of the compact sup-
port (3. 22) can be presented as a distance metric of the set of binary-rational
points 27, while all other points as +1/3, £4/7, +/2/2, +r/8 contain
Zero metrlc length. The convolution procedure (3.20) causes up(¢) to contain
all polynomial orders by parts of its compact support.

Fourier transform of the basic atomic function up (¢) corresponds to the
product of an infinite number of Fourier transformations of the convolution

factor
& sin(t/ 2]

=T[4 o (3.23)

j=1

Due to its infinite number of continuous and non-zero derivatives, func-
tion up({) can be regarded as a perfect spline. However, it is still not an an-
alytic function at any point of its support. Moreover, its finiteness is higher
than that of B-splines. The mother atomic function up (&) retains the good lo-
calized property of B-splines but also possesses the property of universality,
as trigonometric or algebraic polynomials. Universality means that adding
new basis functions in some approximation can only improve or at least not
change the previous approximation which means that the new approxima-
tion contains old approximation as a vector subspace.

The values of up(¢) and its derivatives can be found exactly in the form of
rational numbers in the binary-rational points. Those binary-rational points
are defined as:

&= —14+k-27", meN, k=1, ...2""" (3.24)

At all other points of the compact support calculation of up (¢) can be done
only approximately, but up to the computer accuracy. Even though the cal-
culation of up (¢) can use FT (3.23), Gotovac and Kozuli¢ [41] found a more
appropriate expression for the calculation of up(¢) values in binary-rational
points:

o—m(m+1)/2 k  [m/2]

up(&y) = ——— 25 Yo G k=) +1)" ey (325)

=0

where C2{ are binomial coefficients, d; are coefficients that have sign accord-
ing to the following recursive formulas:

dok—1 =10k, Ok =0, k€N, 6 =1 (3.26)
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and expression [m /2] represents the maximum integer of the fraction within
the brackets, and a,, are even moments of up(¢) defined by the following
recursive formulas:

| k

A2k—2¢ . .
2k 22k 1£2k sy KENG m=1 (327)

-

— -
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FIGURE 3.6: Generation of the function up(¢) using the convo-
lution theorem (see Eq. 3.20).

For the calculation of up(¢) values at arbitrary points, Gotovac and
Kozuli¢ [41] suggested a special series based on Taylor series of the up(¢)
function at the binary-rational points ¢;, (because it is then a polynomial of
the n-th order). Values of the even function up(¢) in arbitrary point ¢e [0, 1]
can be presented as follows:

oo k )
up (&) =1-up(&-1) =1- Y ()" P p Y Cpet)  (3.28)
k=1 j=0
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where the coefficients Cj are rational numbers containing values of up(¢) at
the binary-rational points ¢ = —1 + 1/2" [41]:

Cir = jl!zf'<f+1>/2up(—1+2<kf>); j=0,1,...,k; k=1,2,..., 00
(3.29)
Factor Ay in (3.28) presents the difference between the real value of co-
ordinate ¢ and its binary presentation with k bytes, where p;... pi are the
digits 0 or 1:

k
1
Be=E-Y piy; (3.30)
i=1

This means that the obtained accuracy of the coordinate ¢ reflects on
the accuracy of up(¢) values at arbitrary points, which in turn depends
on the computer accuracy. For a chosen m, the calculation error of up(¢)
values at the arbitrary points ¢ (equal to the residual of series (3.28) when
k=1, ... ,m), does not exceed the value of up (—1+2"™). In this work, 21
binary-rational points (m=16) were used, which means that the calculation
error is of the order of up (—142716) =0.117-107°!, which is significantly
smaller than the computer accuracy. In practice, for all numerical calcula-
tions, it is sufficient to use (3.25) and 2'° binary-rational points (m=16) be-
cause its density enables interpolation of the value at any arbitrary point up
to the computer accuracy.

For an exact description of polynomials up to the n-th order on the inter-
val AZ, = 27", it is necessary to use 2" ! basis functions obtained by shifting
up(¢) for Ag,. Such a relatively large number of basis functions implies poor
approximation properties of up (¢) . This is the main reason why application
of up(¢) in numerical analysis for practical purposes is quite limited.

3.4 Fup basis functions

Fup,(¢) are another class of atomic basis functions, also belonging to the
polynomial types of basis functions, which require only (1+2) basis functions
to exactly describe polynomials up to the n-th order on interval A¢, = 27".
For instance, for the development of a 4-th order polynomial, only 6 or (1+2)
Fup, (&) are needed in comparison to 32 up(¢) basis functions. The compact
support of Fup, (&) contains n+2 characteristic intervals A¢,, = 27"

supp Fup,(§) = [— (n+2)-27"71, (n+2)-2_”_1} (3.31)

For n = 0, the following holds:

Fupo(¢) = up(Z) (3.32)

Function Fup, (&) can be defined as finite solution of differentially func-
tional equations, in a similar way as a function up(¢). By analogous proce-
dure as for function up(¢), general expression for the Fourier transform F,, ()
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of the function Fup,({) is obtained by

Fy (1) = (sin(t/z—"—1)> 1;”[ sin(t/Zj). (3.33)

b2t ) S, /Y

Furthermore, function Fup,(¢) can be obtained by a convolution proce-
dure using the contracted B, and up basis function:

Fupu(§) =Bu(2" §)+up (2" ¢) (3.34)

This means that Fup, (&) is closely related to B, (¢) and that they together
share all the mentioned properties. However, Fup, () has better approxi-
mation properties than B, () due to the convolution with the up function
containing all orders of polynomials by parts and infinite continuity. More-
over, they share the same convergence properties because it is directly linked
by the polynomial order which can be exactly described by linear combina-
tion of these functions. Additionally, the Fup, (&) has better approximation
properties which are paid by one more characteristic interval for the same
n-th order of basis functions. Equation (3.34) is not numerically favorable for
calculating the value of the function Fup,({).

Atomic basis functions have a “deeper” mathematical background, and
they are generally solutions of differential-functional equations, which for
Fup, (¢) take the following form:

, n+2 _ k n +2
Fup, (&) =2 (Ck—Ci™)-Fup, (2@ — i+ W) (3.35)
k=0

where CK are binomial coefficients defined as

ck = (Z) - % (3.36)

The relationship between Fup, (¢) and the shifted Fup, 1 () can be pre-
sented in the general form:

1 kK n+1
F”Pn(é)zﬁ Y. Chii-Fup, s (‘: “onii T W) (3.37)
k=0

Equations (3.35-3.37) present the atomic structure of these basis functions
because a function and its derivatives are decomposed by a linear combina-
tion of these same functions (Rvachev and Rvachev [37]). Fup,({) can be
calculated by a linear combination of up(&) mutually shifted by the charac-
teristic interval 27"

k n+2) (3.39)

Fupn(8) = ), Ce(n)-up (‘f— 1- on T onit
k=0
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The zero coefficient in (3.38) is:

Co(n) =2Ci1 = 2n(nt1)/2 (3.39)
A Fup,($)
T
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FIGURE 3.7: Function Fup, (&) with its first three derivatives.

Other coefficients are calculated in the form Cy(n) = Co (n) - C;((n), where
the coefficients C;c(n) are obtained using the following recursive formulas:

Co(n) =1
min { k; 2411} (3.40)
Cy(m) = (1) Cypy — B Crj (1) - dj1a
j=1

For example, Figure 3.8 shows function Fup,(¢) and shifted up(¢) func-
tions from which a linear combination yields Fup4 (&) following (3.38). The
compact support for function Fupy(¢) according to (3.31) is [—%, %} , with
zero coefficient Cy = 2% = 1024 and the rest of the coefficients (Cg) are
calculated using (3.40).
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(&) as a linear combination of the
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34 Chapter 3. Spline basis functions

Derivatives of Fup, (&) are calculated from (3.35) and (3.38). Figure 3.7
presents Fup, (¢) with its first three derivatives, which has the same num-
ber of characteristic intervals as B3 (). However, the third derivative has no
discontinuities due to the enhanced continuity of Fup, (¢).

In the numerical modeling of boundary value problems, there is a need
to modify boundary basis functions in order to keep the same approxi-
mation properties as inside the domain. The concept of boundary basis
functions refers to the linear combination of basis functions whose com-
pact supports are at least partially located inside the domain. For sim-
pler notation, modified boundary Fup, basis functions are designated as
Pnjs ] = —[(n+1)/2],..,[n/2] on the left domain boundary {4, and j =
N —[n/2],..,N+ [(n+1)/2] on the right domain boundary &p (N is the
number of characteristic intervals A¢;).

Modified boundary basis functions ¢, ; are presented in the form of a
linear combination of the original Fup, basis functions, which are hereinafter
referred to as v, ;(x), i = —[(n+1)/2],...,j on the left boundary and i =
j, e N+ [(n+ 1) /2] on the right boundary.

The boundary basis functions ¢, ; on the left domain boundary are mod-
ified so that i-th derivation is satisfied in a manner

Py (€a) £0 for j+[(n+1)/2) i< (3.41)
gu)(Ga) =0 otherwise; (eN ,

Modification of the right boundary basis functions are achieved by trans-
lating and mirroring the left modified boundary basis functions.

In the vector space of mutually displaced Fup, basis functions, it is nec-
essary to modify the (n 4 1) basis functions on the left and right boundary
domain, whose compact supports are partially outside of the domain (Figure
3.9).
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FIGURE 3.9: a) Linear combination of mutually displaced
Y2,i(¢) basis functions and b) Modified boundary ¢, ;(¢) basis
functions on the left and right boundary domain.

In Figure 3.9a a linear combination of basis functions y,;(¢) is shown,
while Figure 3.9b shows the modified boundary Fup, basis functions at the
left and right boundaries of the domain. Modified boundary Fup, basis func-
tions on the left boundary are defined as

92,-1(8) = Lyp-1 ()
920 (&) = =251 (&) + By20 (€) (3.42)
921 (8) = y2,-1 (&) — Y20 () + v21 (3)

while modified boundary Fup, basis functions on the right boundary are
obtained by translating the left boundary basis functions for length L =
N - Agp and their mirror symmetry around the right boundary, i.e. @2 ;(¢) =

¢2,j(—=¢—L)

P2n-1(8) = y2,n+1 (&) — Fyan (&) +y2,n-1 (8)
pan (&) = —Lyan_1 (&) + Byan () (3.43)
P2n+1 (8) = Ryan+1 ()

Modified Fup, boundary basis functions of other orders are modified in
the same way as presented Fup, (Figure 3.9), so that i-th derivation is sat-
isfied following (3.41). Figure 3.10 shows (n + 1) modified basis functions
with one in the middle (black curve) that is not modified because its whole
compact support is inside the domain.
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FIGURE 3.10: Modified n + 1 Fup, boundary functions on the
right and left boundary domain. (a) n=1; (b) n=2; (c) n=3; (d)
n=4; (e) n=b.
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Chapter 4

Isogeometric analysis (IGA)

This chapter serves as a short introduction to classical isogeometric analysis
(IGA), followed by a description of three different numerical formulations
(Galerkin, collocation and control volume) used for spatial discretization of a
simple steady-state advection-dispersion problem. Galerkin and collocation
IGA formulations are considered as a classical IGA formulations. The con-
cept of IGA is presented as a unified framework for a multiscale description
of the geometry and solution fields.

41 Introduction

Relatively recent ago, designers worked at drawing boards and designs were
drawn with pencils and then passed to stress analysis. Ever since computers
were introduced, times changed. Now designers generate CAD (Computed
Aided Design) files which must be translated into analysis-suitable geome-
tries, meshed and input to large-scale finite element analysis (FEA) codes.
This is not trivial and for complex engineering designs it is estimated to take
over 80% of the overall analysis time [14]. Design of sophisticated engineer-
ing systems is based on a wide range of simulation methods and compu-
tational analysis, such as fluid dynamics, structural mechanics, electromag-
netics, acoustics, heat transfer, etc. The integration of FEA and CAD has
proven to be a considerable problem and some fundamental changes have
taken place to fully integrate analysis processes and engineering design.

Obviously, the way to break down the barriers between engineering de-
sign and analysis is to reconstitute the whole process, while at the same time
maintaining compatibility with existing practice. The basic step is to focus
on one and only one geometric model, which can be used directly as an anal-
ysis model or from which geometrically precise analysis models can be built
automatically. This will require a change from classical FEA to an analy-
sis procedure based on CAD representations. This concept is introduced by
Hughes et al. [14] (see also Cottrell et al. [17]) and is referred to as Isogeomet-
ric analysis (IGA).

The main idea of IGA is to bridge the gap between finite element analysis
(FEA) to describe a numerical solution and a CAD system to describe geom-
etry using the same type of smooth and higher-order (spline) basis functions
for both systems. The core of IGA is the isoparametric concept, widely used
in classical FEM, where the basis functions used to approximate the solution
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tields are also used to describe the geometry. IGA turns this idea in a differ-
ent direction and selects the basis used to describe geometry in CAD systems
as a basis for numerical approximation of the unknown solution fields. The
main difference is that, in contrast to classical FEA, where the geometry is
only approximated, IGA allows an accurate representation of the geometry
in a CAD sense. Furthermore, in addition to clear advantages for describing
geometry, spline basis functions (hierarchical splines) allows for adaptive lo-
cal improvement of the solution.

4.2 Geometry description

There are a number of computational geometry spline candidates that may
be used in isogeometric analysis. The most widely used in engineering de-
sign are B-splines and NURBS. The greatest strengths of NURBS are that
they can exactly represent all conic sections, and therefore circles, cylinders,
spheres, etc., they are convenient for free-form surface modeling, and there
exist great number of numerically stable algorithms that generate NURBS
objects. Moreover, they posses useful mathematical properties such as C"~!-
continuity for nth order NURBS, ability to be refined through knot insertion
and convex hull properties. Besides NURBS and B-splines, there are also
T-splines (see Sederberg et al. [15]). They extend NURBS to permit local re-
finement and coarsening, and are very robust in their ability to efficiently sew
together adjacent patches. Moreover, T-splines are used to generate analysis-
suitable models for arbitrary topological complexity [57], can be locally re-
tined [58] and are capable of significantly reducing the number of the super-
fluous control points.

It should be noted that in FEA there is one notion of a mesh and one no-
tion of an element, but also that one element has two representations, one in
the parent domain and one in physical space. Degrees of freedom of the ele-
ments are usually the values of the basis functions at the nodes, and elements
are usually defined by their nodal coordinates. Finite element basis func-
tions, often referred to as “interpolation functions” or “shape functions”, are
typically interpolatory and may take on positive and negative values. How-
ever, for example in NURBS, the basis functions are usually not interpolatory
and there are two notions of meshes, the control mesh and the physical mesh.
The control points (see Figure 4.1) define the control mesh and the control
mesh interpolates the control points. The control points enables the designer
to create a wide range of desired objects, for instance, in the aviation or car
industry. The control mesh consists of multilinear elements and does not
conform to the actual geometry. Instead, it can be described like a scaffold,
that controls the geometry. Control variables that defines the control mesh
are the degrees of freedom that are located at the control points (red circles
on the Figure 4.1). Just like the control elements may be degenerated to more
primitive shapes (triangles in 2D or tetrahedra in 3D), the control mesh can
also be distorted and even, to some extent, inverted, while at the same time
the physical geometry my still remain valid for enough smooth NURBS.
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The physical mesh, i.e., decomposition of the actual geometry, consists
of two types of elements, the patch and the knot span (see Figure 4.1). The
patch may be thought of as a macro-element or subdomain. While there are
multiple patches in FEM (one element one patch) in IGA most geometries, for
academic test cases, can be modeled with a single patch. Each patch has two
representations, one in physical space and one in a parent domain. Patches
in two-dimensional topologies are rectangles (see Figure 4.1), and in three
dimensions are a cuboid in the parent domain representation. Patches can be
decomposed into knot spans which are bounded by knots which are points,
lines and surfaces in 1D, 2D, and 3D topologies, respectively.

PHYSICAL SPACE
ontrol mesh

/Control points

w Integration is
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. parent element
N
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PARAMETER SPACE (actual geometry) \
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FIGURE 4.1: Schematic illustration of isogeometric analysis

(IGA): physical space with control points and control mesh, pa-

rameter space with spline basis functions and related parent el-
ements, knot vectors, and index space.

Figure 4.1 shows schematic illustration of IGA how one 2D subdomain or
patch is transformed from the parameter (virtual) space to the physical (real)
space using following spline representation

x(&n) =Y x¢0;Cn) y(En) =Y yipi(Cn) (4.1)
j=1 j=1

where x; and y; are the coordinates of the control points B(x;, y;) in the phys-
ical space, while ¢ and 5 represents the coordinates in the parameter space.
However, the main part of (4.1) are spline basis functions ¢; which in classic
IGA are B-splines and NURBS. It is clear from (4.1) that IGA operates only
with basis functions in the virtual regular domain since transformations from
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the virtual to real, and vice versa are defined by the Jacobian

ox 9y N %x' %y-
[ [gg ggl _y [aag] j aa(g] ]] (4.2)

o ol = g% Y

and its inverse o y dy
rlzlg 3]:%][_@ ‘a_x%], 43)

Ay o %

as in classic FEM. However, the main difference is that IGA considers the
transformation of each patch, which can be thought of as a macro-element
or a subdomain, while the FEM performs transformations for each element
[17].

The numerical solution in the virtual domain is also described by inde-
pendent set of spline basis functions

w(@,n) =Y a;jpi(&n) (4.4)
j=1

It should be noted that number and order of the basis functions in the (4.1)
and (4.4) may not be the same.

4.3 Three IGA formulations

In the following, the discretization process will be presented by considering
a simple steady-state advection-dispersion equation (ADE) in the form:

V- (DVu(x)) = V- (vu(x)) =0 in Q (4.5)
with appropriate boundary conditions:
u(x) =up on TIp (4.6)

(DVu(x)) -n=¢qn(x) on Ty 4.7)

where u(x) represents the dependent variable, while the first (D) and second
(v) term in Equation (4.5) represent influence of the dispersive (diffusive) and
advective (convective) flux, respectively, which in general may be function
of time, space and/or an unknown solution. Domain boundaries under the
Dirichlet and Neumann boundary conditions are I'p and I'y, respectively,
and n is the outward normal vector.

Method of weighted residuals can be thought as a general approach for
deriving the different numerical formulations. The main idea is to integrate
differential equation (4.5) over the domain of interest and multiply it by a
finite number of weighting (test) functions w;(x):

/Q V- (DVu(x))w;(x)dQ — /Q V- (ou(x)wi(x)dQ =0  (48)
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where the number of test functions (w;) is generally the same as the number
of basis functions, and because of that the number of equations is equal to
the number of unknowns.

T _I_ LA _I_ L _I .oy — Finite elements  (G-IGA)
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FIGURE 4.2: Discretization of 2D domain with three different
IGA formulations.

Two most used formulations in IGA [14], [17] are Galerkin and collocation
formulations using B-splines or NURBS as basis and test functions. However
in this work besides those two methods, new formulation control volume
within IGA (CV-IGA) will be introduced. Furthermore, Fup basis functions
and the CV formulation are used, and referring to this method as control vol-
ume isogeometric analysis (CV-IGA), first developed using only low order
Fup; and uniform non-adaptive discretization in [52] and applied to mul-
tiphysics model of the flow in karst aquifers. The main idea of CV-IGA is
to utilize the powerful approximation and adaptive properties of Fup basis
functions for numerical solutions of engineering problems that arise in the
field of fluid mechanic with the conservation properties of the CV formula-
tion (as in control volume finite element method; [59]-[61]). The CV formula-
tion enables local and global conservation properties, with the computational
cost between Galerkin (high-cost) and collocation (low-cost) (see [49]). One
way to derive the three formulations, which will be presented in this paper,
is to use different weighting (test) functions.

4.3.1 Galerkin formulation (G-IGA)

By using the same functions to construct both the trial (basis) functions and
weight (test) functions spaces, the classical Galerkin formulation is obtained.
In G-IGA, the spline basis functions ¢;, usually B-splines or NURBS, used as
the weighting functions, are also used for the solution and geometry descrip-
tion. By setting w;(x) = ¢;(x) and substituting it into equation (4.8) gives

/Q V- (DVu(x))p;(x)dQ — /Q V- (ou(x)gi(x)dQ =0,  (49)
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and by applying integration by parts and divergence theorem (Green-Gauss-
Ostrogradski theorem), the weak form of (4.9) is obtained:

/Q(DV“(X))VGOi(X)dQ— /Q(vu(x))V(pi(x)dQ =

(4.10)
[ (DVu(x) —ou(x)nwi(x)dr + [ quei(x)dr
I'p I'n
Weak formulation (4.10) assumes that Neumann conditions can be directly
imposed. However, test functions need to be zero on Dirichlet boundary so
that Dirichlet boundary integral disappear at the right side in (4.10). In the
classical FEM, the Dirichlet boundary conditions are satisfied by imposing
solution values in the finite element nodes. It is possible because, classical
FEM uses Lagrangian basis functions which are collocated in finite element
nodes. Since in IGA multidimensional domains, higher-order spline basis
functions have no such Kronecker property on Dirichlet boundary, special
treatment of essential boundary conditions is needed.

By expressing solution u(x) as a linear combination of spline basis func-
tions (u(x) = a;@j(x)), the weak form (4.10) can be obtained in the final
discrete form. The maximum number of nonzero basis functions (¢;) for a
given discretized equation is determined by the polynomial order (1) of the
basis functions. The main difference from the FEM is that the control points
are not necessarily located at the element corners (see Figure 4.2) and the fact
that the control variables, i.e. coefficients of the linear combination aj cannot
be interpreted as nodal values due to the non-interpolatory nature of spline
basis functions.

4.3.2 Collocation formulation (C-IGA)

The collocation approach is different from other two mentioned methods be-
cause it is carried by using the Dirac delta function (see Eq. (2.20)), produc-

ing:
/Q V- (DVu(x))5(x — x;)dQ — /Q V- (ou(x)(x — x)dQ =0 (4.11)

Due to the properties of the Dirac delta function, demanding integration pro-
cedure is eliminated. Because of that, at each i-th internal collocation point
the governing PDE (4.5) is satisfied in the strong differential form:

V- (DVu(x;)) =V - (vu(x;)) = 0. (4.12)
By differentiating equation (4.12) and obtaining,
DV2u(x;) — oVu(x;) =0 (4.13)

it is obvious that strong collocation formulation (4.11) requires at least C?
continuity of the basis functions, whereas the Galerkin form (4.10) required
only C! continuity.
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Collocation greatest strength comes from the fact that it avoids costly nu-
merical integration and the fact that the number of nonzero elements is sig-
nificantly reduced compared with the Galerkin formulation. Because of that
C-IGA can be competitive with G-IGA in terms of computational cost for a
given accuracy, especially for higher-order spline basis functions, which is
proven by Schillinger et al. [62]. Another difference from Galerkin formula-
tion is that collocation formulation satisfies the boundary conditions in the
strong sense, i.e., both the Dirichlet and Neumann conditions are satisfied
exactly.

The choice of the collocation points in not an easy task. It is of the most
important components for the success of the collocation method. In recent
years, considerable progress has been made on this topic especially within
C-IGA and various sets of collocation points. Most notably being Greville
points (abscissae), knot maxima and Demko points. Because of their sim-
ple definition and stable procedure, the Greville points have been widely
adopted as the default choice (e.g., [62]).

In case of the B-splines of order n, the Greville points are defined to be
the mean location of n — 1 consecutive knots in the knot vector for each basis
spline function of order n [63]. Since Fup basis functions have one more char-
acteristic interval for the same order, the grid points of the Greville abscissae
calculated for the B, correspond to the Greville abscissae grid points of the
Fup,_1. The Greville abscissa (Figure 4.2 - black circles) for the Fup, basis
functions can easily be computed from a knot vector & = {G1, 2, ..., Cmtn+2}

1

Gi =~ 7 Gttt Civnrn), I=1,m (4.14)

where 1 is the order of the basis functions, and m is the number of basis
functions.

4.3.3 Control volume formulation (CV-IGA)

The control volume formulation is performed by firstly dividing the domain
of interest by m control volumes (see Figure 4.2) (();;i = 1,...,m). CV formu-
lation [10] uses test functions defined in the following form:

1 0;
wi(x) = {0 X ;Q P eq. (4.15)
X 1

Substituting (4.15) in (4.8), the direct integral form of the governing equation
is recovered:

/Q,- V- (DVu(x))dQ — /Ql- V- (vu(x))dQr =0 (4.16)

It should be noted that the integration is performed only over the i-th control
volume (CV) due to the properties of the test functions (4.15). The surface
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integrals at left side over the control volume are transformed into a line inte-
grals across (); boundaries I'; using Gauss’s theorem,

/(DVu(x))ndT - / (vu(x))ndl =0 (4.17)

T; T;

where n is outward normal vector, thus obtaining the conservative form.

Finally, weak formulation (4.17) is defined on each control volume using
spline basis functions and test functions (4.15) in order to get fully discretized
control volume formulation:

Dé]' /(DVgo](x))ndl"z—/(v(p](x))ndl“z = /quFN (418)
I'; T; I'n

where i is the subscript which denotes index of control volumes and row of
stiffness matrix, while j is the subscript which denotes index of spline basis
functions and column of the stiffness matrix. It is valid for all internal and
boundary control volumes with Neumann boundary conditions. However,
as in G-IGA, Dirichlet boundary control volumes requires special treatment
of essential boundary conditions.

Conservation is an interesting feature of the control volume formulation.
The conservation is exactly satisfied over any control volume (local conserva-
tion), as well as over the whole computational domain (global conservation).
Furthermore, even the coarse-mesh solution exhibits an exact integral bal-
ance [10].

CV-IGA requires cheaper numerical integrations then G-IGA because
control volume formulation (4.17) requires only integration over CV bound-
aries I';, while Galerkin formulation (see Eq. (4.9)) requires (full) integration
over the part of the domain where the particular test function is defined. Fur-
thermore, the number of nonzero basis functions for each discretized equa-
tion in CV-IGA is lower then in G-IGA, thus the cost for the solution of the
system of equations is generally lower then that for G-IGA. For comparison,
the number of nonzero basis functions for CV-IGA for each discretized equa-
tion is (1 + 2)4™ for odd order of basis functions and (1 + 3)%" for even,
whereas for G-IGA this number is defined by (21 + 3)4", where dim denotes
the dimensionality of the problem.
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Chapter 5

Adaptive techniques based on
B-spline and IGA

This chapter introduces hierarchical B-splines (HB) as well as truncated hier-
archical B-splines (THB) as adaptive technique used within IGA for local re-
tinement. HB consists of defining a suitable set of basis functions on different
hierarchical levels. However, this strategy can be improved using truncation
operation to recover partition of unity and to have superior stability proper-
ties, giving rise to the THB. Giannelli et al. [16] introduced THB-splines with
aim to reduce the overlap of basis functions within HB by choosing a spline
basis with smaller supports. The reduced overlap yields a sparser stiffness
matrix which results with less time required for its assembly, less memory to
store it, and potentially less time for solving the discrete problem.

The analogue of h-refinement is knot insertion, whose insertion does not
change a curve geometrically or parametrically. Consider a knot vector, & =
{¢1,82, ., Cins1}, and let & € [¢y, Ex11] be a desired new knot. By inserting
new knot, the new m + 1 basis functions are formed recursively following
(3.12) and (3.13) with new knot vector & = {&1,&, ..., &, &, Ckats oo Contnsl }
(see Figure 5.1a). It should be noted that each unique internal knot value may
apper no more then n times otherwise the curve becomes discontinuous.

Figure 5.1a presents an example of a knot insertion. Starting knot vector
for the quadratic B-spline basis functions is =0 — {0,0,0,1,2,3,3,3}. A new
knots are inserted at & = 0.5,¢; = 1.5 and &; = 2.5, which gives 3 new
basis functions in the new layout (see Figure 5.1a). After inserting new knots
5, i = 1,2,3, knot vector is changed, thus giving a new knot vector =l =
{0,0,0, %, 1, %, 2, %, 3,3,3}. This process of enriching the solution space can be
repeated by adding more basis functions of the same order. This subdivision
strategy is seen to be analogous to the classical h-refinement strategy in finite
element analysis.

In previous refinement procedure, the polynomial order of the basis func-
tions did not increase while inserting a knot(s). However, there is a strategy
of order elevation (p-refinement) where the polynomial order of basis func-
tions may be increased without changing the geometry or parameterization.
Furthermore it should be noted that each unique knot value in & must be re-
peated to preserve discontinuities in the nth derivative of the curve that is be-
ing elevated. This strategy of order elevation is an analogue of p-refinement
in the FEA.
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FIGURE 5.1: Two different strategies of refinement within IGA.
Original knot vector for upper left and right domain is E° =
{0,0,0,1,2,3,3,3}. (a) Knot insertion - spline functions of the
same order but smaller knot intervals, i.e. higher frequencies;
changing element size. Knot vector after knots insertion Z! =
{0,0,0,1,1,3,2,3,3,3,3}. (b) Order elevation - higher degree
of basis functions; element size remains the same. Knot vector
after order elevation Z! = {0,0,0,0,1,2,3,3,3,3}.

An example of order elevation is shown in Figure 5.1b with starting knot
vector 20 = {0,0,0,1,2,3,3,3} for the quadratic B-spline basis functions.
This time the multiplicity of the knots is increased by one giving one more
control point and basis function. New knot vector for four cubic basis func-
tions is &1 = {0,0,0,0,1,2,3,3,3,3} and are presented in Figure 5.1b (right
down).

5.1 Hierarchical B-spline basis functions

Hierarchical B-splines aim to construct base that is combined from coarse
level B-splines and fine level B-splines at different regions of the domain.
The fine level B-splines are generated from coarse level B-splines by global h-
refinement operations. Only a subset of the fine level functions are included
based on a selected refinement region. Refinement is procedure of gaining
finer control over a spline curve or surface. For curves, refinement is a local
process that permits the change of control vertices in one region of the curve
while leaving control vertices in other regions unaffected.

Uniform B-spline basis functions B; ,(&) (i = 1,2,...,m) of a given order
n are defined on a knot vector & = {&1, 2, ..., Eins1}, where &; € R is the
i-th knot and m is the number of basis functions. B;, is defined on local
support [§j, ..., Gi1n+1]- B-spline basis functions are refinable, which enables
the construction of HB and its truncated variant THB a modified version of
HB with the only difference that the basis functions whose support overlaps
finer levels are truncated [31], [33], [34]. Assume Z° is an initial uniform knot
vector; El(l = 1,2,...) can be obtained by ! subdivisions of =0 while I also
presents the resolution level, where for I = 0 mesh is always uniform.
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Hierarchical B-spline basis is constructed by excluding coarse level func-
tions whose supports are contained within the selected refinement area and
replacing them by the fine level functions whose supports are contained
within the same area as the excluded coarse functions (see Figure 5.2).
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FIGURE 5.2: Local hierarchical h-refinement of the B,-spline

basis with knot vector &' = {0,0,0,1,2,3,4,5,5,5} and refine-

ment area (). = (3,5). B' are hierarchical B-splines on refine-

ment level [, B! are refinement B-splines used to construct

finer resolution level, and B'*! are B-splines combined from
coarse and finer resolution level.

Figure 5.2 shows a hierarchically h-refined basis in three rows (pictures).
The B-splines B’ from resolution level ! (Figure 5.2a) are plotted in the first
row and the h-refined B-splines B.+! of the B! are plotted in the second row
(Figure 5.2b). The marked refinement area is set as Q. = (3,5). Functions
contained within (3,5) from B! are marked passive and excluded from fur-
ther process while the rest are marked active. Functions within (3,5) from
B+1 are marked active (solid black curve) and included in further process.
To construct B'*! (Figure 5.2¢), only active basis functions from both level
are included, (B'™! = B, U BLi).

To guarantee refinement, Q! must at least contain the support of a sin-
gle basis function from the higher-level basis B/*!. Since higher level basis
functions have smaller supports, having this as a minimal selection criterion
could lead to the addition of fine (higher) level functions without excluding
any coarse level functions, leading to excessive overlap of functions from dif-
ferent levels. Figure 5.2 shows how this choice has some disadvantages with



48 Chapter 5. Adaptive techniques based on B-spline and IGA

respect to e.g. possibility of having a partition of unity basis [24] and the
bandwidth of the resulting stiffness matrices.

Generally, the hierarchical B-spline basis functions in non-rational form
do not satisfy partition of unity which is evident from Figure 5.2. In last row
(Figure 5.2¢), basis function from coarse resolution level B ! overlaps with first
two (active) basis functions from finer resolution level B/*1, which can lead
to poor numerical conditioning.

5.2 Truncated hierarchical B-spline basis func-
tions

Truncated hierarchical B-splines (THB) were introduced and analysed in [16],
[64]. THB-splines can be considered as an upgrade for hierarchical B-splines
(HB) i.e., an alternative basis for the space of hierarchical splines, that regains
the partition of unity property and reduces the support of the basis functions,
therefore reducing the interaction between them. In the classical hierarchical
construction, coarse basis functions of a certain level / whose support is com-
pletely covered by finer basis functions of level I 4 1 are replaced. However
for THB, the replacement is done as in the hierarchical case with addition that
coarse basis functions whose support has a non-empty overlap with Q'+ are
truncated (see Figure 5.4).

THB refinability (see [16], [31]) indicates that a basis function qu defined

on &! can be represented as a linear combination of n + 2 B! basis functions
defined on &/*1 a
1 (m+1Y\ .
Z ClkBé_z:}kn with ¢? ik = ou ( —l: ),z =0,.., mh —1 (5.1)

where ¢, are the refinement coefficients (see table 5.1) and m'! is the number

of basis functions defined on E!. This procedure enables h-adaptive methods
because each next resolution level has basis functions with two times smaller

compact support (h-refinement). The n + 2 basis functions Bét:k , on the next
level are called the children of Bf/n (¢) i.e., denoted as,
chdBL,(¢) = {ngjkn(gﬂk = 0,1, .1+ 1} . (5.2)

Figure 5.3 shows how a uniform univariate cubic B-spline basis function B ; l
can be represented by a weighted summation of its five children Bl+1(k =
0,1,2,3,4). Each color represents one refinement coefficients and if ba-
sis functions have same refinement coefficients then they are colored with
same color (for example, red is assigned for Bf)fgl(ﬁ) and Bigl(é) because
o= Cos =1/8).

Figure 5.3b presents 5 B spline basis functions after h-refinement where
each children have two times smaller compact support then starting B3 spline



5.2. Truncated hierarchical B-spline basis functions 49

0.8
0.7F
0.6F
0.5F
0.4r
0.3F
0.2F
0.1t

(@) By5(Z) G BE (8): (k=0,..,4) (9 c}B5 (§)i(k=0,..,4)

FIGURE 5.3: Refinability of a B3({) spline basis function. (a)

36/3({:) is defined on the knot vector &' = {0,1,2,3,4}; (b)

B,l(gl(g); (k = 0,1,2,3,4) are defined on a knot vector E*1 =

{0, %,1, %,2, 2,3, %,4}; and (c) B,lcgl(é) is weighted with Cg,k =
L) fork=0,1,2,34.

basis function (Figure 5.3a). After including refinement coefficients (see Table
5.1) for each basis functions refined B3 spline basis functions are obtained,
as presented in Figure 5.3c, and according to (5.1) 3613 (Figure 5.3a) can be
represented by summation of its five children (refined basis functions; Figure
5.3¢).

ch
" d G N T T
1 1/2 1 1/2 - - - -
2 1/4 | 3/4 | 3/4 |1/4 - - -
3 1/8 | 1/2 | 3/4 |1/2| 1/8 - -
4 1/16 | 5/16 | 5/8 |5/8 | 5/16 | 1/16 -
5 1/32 | 3/16 | 15/32 | 5/8 | 15/32 | 3/16 | 1/32

TABLE 5.1: Refinement coefficients for B,-spline; n=1,2,3,4,5.

In the following, construction of only two consecutive levels with ba-
sis functions from level | and [ + 1 will be shown, where | > 0. Start-
ing from the initial parametric domain Q) with equally spaced knots &/ =
{0,1,2,3,4,5,6,7,8,9,10}, B! set of B-spline basis functions are defined on
a level I (see Figure 5.4). The supports of all the basis functions B’ from
initial level I covers O i.e.,, QO = supp B'. According to [65], the function
space spanned by B! can be enlarged by replacing the certain B-spline ba-
sis functions with their children, which indicates a local refinement of basis
functions. Figure 5.4 shows a construction process for univariate cubic THB
but also for HB in three steps:

¢ Identify a set of basis functions Bé C B! to be refined at level [ (gray
solid curve) and designate them as passive while the remaining basis
functions in B! are designated as active (B, = B \ Bé).
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FIGURE 5.4: Comparison of univariate cubic HB- and THB-

splines. (a) Three steps to construct univariate cubic HB-spline

basis function without truncation and (b) tree steps to con-

struct univariate cubic HB-spline basis function with truncation
(THB).

* Obtain the children at level / + 1 (red solid curves) only for the passive
B, and define them as active; B, = chdB},.

* Merge all of the basis functions that are active from levels / and I + 1 to
obtain the hierarchical B-spline basis functions on the new level,

Byt =B =B U B, (5.3)

Eq. (5.3) refers to the global selection of all active basis functions, where
the active basis functions are updated in each recursive step described above.
Hierarchical B-spline basis functions in nonrational form do not satisfy par-
tition of unity. To overcome that problem and to decrease the overlapping
of basis functions for better numerical conditioning, a truncated mechanism
for hierarchical B-splines was developed [16], [31]. Figure 5.4 shows how
in the classical hierarchical construction, coarse basis functions from level [
whose support is completely covered by finer B-splines of level I + 1 are re-
placed. THB-splines refinement (replacement) works as in the hierarchical
case with addition of active coarse basis functions B}, whose supports have
a non-empty overlaps with Q/*!. These functions need to be modified or
truncated as follows.

Definition. Given a set of (passive) basis functions B;, to be refined, refinement

areqa ig defined as Ql“ = su.p.pBi,'. Provided that B! ¢ Bi, is refinable and following
equation (5.1) for its refinability gives,

Bi(&)= ), ;B (5.4)

Bl-+1

suppB; gsuppBl
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where c;; € R are refinement coefficients from mid-knot insertions (see table 5.1),
and B]l.ﬂ(g) € chdB!(&). The truncated basis function B! is defined as

trunBl (&) = Y. cl-,]-B]l.Jrl (&) (5.5)

suppB}'H ngH

with respect to Bé [31].

Equation (5.5) indicates that only children of B! whose supports are fully
contained in (); 1 are discarded while constructing the truncated basis func-
tion trunB!. In Figure 5.4, the gray solid line represents the basis function to
be refined B;, which is also set as passive, and refinement area is Q' *! = [3,7].
In case for univariate cubic hierarchical B-splines, each basis function from
level [ has five children on level I + 1, and four basis functions surrounding
Bé (2 on the left and 2 on the right; gray dashed curve) need to be truncated

because they have children with supports fully contained in Q'*!. For the
two basis functions adjacent to B;, three children are discarded, and for the
other two basis functions, only one children is discarded. Basis functions that
are far away from refinement area Q'+ i.e., they do not have children within
that area, are not truncated. After truncating all designated basis functions,
new level is constructed by combining active functions from level [ (black
solid curve and gray dashed curve; non-truncated and truncated) with ac-
tive basis functions from level [ + 1 (red solid curve; B! = cthé).

The hierarchical B-spline basis with truncation has been proven to form
a partition of unity and therefore achieves strong stability [64]. It gives a
sparser connectivity among basis functions at different levels, and it can pre-
serve geometry when local refinement is performed [31].
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Chapter 6

Adaptive modeling based on
hierarchical Fup basis functions
and CV-IGA

Throughout the rest of this thesis strategy for the adaptation of Fup to non-
uniform meshes and their local refinement is investigated. A novel adaptive
algorithm that is based on control volume IGA formulation and novel hierar-
chical Fup basis functions [37], [38], [41] is presented. Because of its similar-
ity to the concept of isogeometric analysis (IGA) it is called control volume
isogeometric analysis (CV-IGA). In this chapter process of constructing 1D
and 2D hierarchical Fup (HF) basis functions is shown which are closely re-
lated to the HB and THB. HF have the option of local hp-refinement such
that they can replace certain basis functions at one resolution level with new
basis functions at the next resolution level that have a smaller length of the
compact support (h-refinement) but also higher order (p-refinement). This
feature provides spectral convergence and presents a substantial improve-
ment in comparison to THB that enable polynomial convergence. Further-
more, additional stabilization methods are included in adaptation procedure
to achieve even greater results and to deal with spurious numerical oscilla-
tions as is the case for advection-dominated problems [66], [67].

6.1 Hierarchical Fup basis functions

B-spline and Fup basis functions are refinable, which enables the construc-
tion of THB and HF basis functions [16], [31], [33]. As shown in previous
chapter, THB refinability indicates that a basis function B!, defined on Z' can
be represented as a linear combination of # + 2 B! basis functions defined
on Z/*1 following Eq. (5.1) where 1 represents basis function order and &! is a
knot vector for resolution level I. This procedure enables h-adaptive methods
because each next resolution level has basis functions with two times smaller
compact support (h-refinement).

However, Fup basis functions refinement is done in a different way. Basis
function Fup!, defined on &/ can be represented as a linear combination of
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FIGURE 6.1: Refinability of a Fup;(¢) basis function. (a)

Fupll((;") is defined on the knot vector & = {0,1,2,3}; and

(b) Fuplz+1 (C — 2% + 22—3) are defined on a knot vector Zt1 =
{0,1,1,3,2,3,3} with C§ = L (}) fork = 0,1,2.

n + 2 Fuplt! basis functions defined on E/*1,

I T I+1 k  n+1
Fup,(¢) = kZ(,) Cor-Fupy\ 6= 51 + 5uiz |/ (6.1)
where Cf; 1 are the refinement coefficients (see Table 6.1)

1 (n4+1
k

The n + 2 basis functions Fu plnfl are called the children of Fu pil, denoted as

k n+1
chdFupl, (&) = {Fupqul <C R TEs W) ‘k =0,1,...n+ 1} (6.3)

Figure 6.1a shows a basis function Fup! defined on a knot vector &/ =
{0,1,2,3}, and Figure 6.1b shows its three children Fupl;rl (¢ - 2% + 2%) de-

fined on a knot vector E/t! = {O, %, 1, %,2, %,3}, where k = 0,1,2. Ac-

cording to Eq. (6.1), Pupl1 (Figure 6.1b - black dashed curve) can be repre-
sented by a weighted summation of its three children Fupl;r1 (Figure 6.1b -
red solid curve). In contrast to THB, hierarchical Fup basis functions (HF)
enable hp-adaptive methods because each next resolution level not only de-
creases compact support but also increases the order of the basis functions
(hp-refinement).
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