Borozan, Vedran

Undergraduate thesis / Završni rad

2021

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj:

University of Split, Faculty of Civil Engineering, Architecture and Geodesy / Sveučilište u Splitu, Fakultet građevinarstva, arhitekture i geodezije

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:123:434530

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-04-02

Repository / Repozitorij:

FCEAG Repository - Repository of the Faculty of Civil Engineering, Architecture and Geodesy, University of Split

SVEUČILIŠTE U SPLITU FAKULTET GRAĐEVINARSTVA ARHITEKTURE I GEODEZIJE

ZAVRŠNI RAD

Vedran Borozan

Split, 2021.

SVEUČILIŠTE U SPLITU FAKULTET GRAĐEVINARSTVA ARHITEKTURE I GEODEZIJE

REKONSTRUKCIJA I NADOGRADNJA LUČICE RESNIK

Završni rad

Split, 2021

Sažetak:

Lučica se nalazi na sjeverozapadnom dijelu Kaštelanskog zaljeva, na lokaciji već postoji izgrađen porat (110m) i lukobran (25m) na kojem se nalazi 20-ak "divljih" vezova. Lučica je najizloženija jugu iz razloga što privjetrište ima najveću udaljenost s jugozapadne strane (25-35km), od otoka Brača pa kroz Marjanska vrata. Da bi povećali broj vezova i postigla veća sigurnost postojećih, cijela lučica se nadograđuje, s tim da se dužina lukobrana produljuje za gotovo 3 puta njegovu duljinu, odnosno 55 metara, stari dijelovi lukobrana se potpuno uklanjaju zbog svoje divlje (loše) izvedbe, dok se dio porta odnosno dijela lučice kopno-lukobran samo rekonstruira iz razloga što je dobro utemeljen u okolno tlo sa stijenama (vapnenac) koje zalaze do 3 metra u tlo (lapor).

Ključne riječi:

lukobran, nadogradnja lučice, rekonstrukcija

RECONSTRUCTION AND UPGRADE OF PORT OF RESNIK

Abstract:

Port is built on northwestern coast of Kaštela bay, there is already built trestle (110m) and breakwater (25m), there is around 20 wild berths. Port is mostly exposed to southeast wind with fetch of 25-35km, all the way from island of Brač through Marjan gate. So we could build more berths and make existing ones safer, we are doing reconstruction of the port, breakwater will be extended up to 3 times its existing length, that is 55 meters, parts of the existing breakwater are being completely removed because of their poor construction performance, trestle will just be reconstructed because it's well founded in surrounding skerry formations which are reaching deep (up to 3 meters) into ground (marl).

Keywords:

breakwater, port upgrade, reconstruction

1. OPIS LOKACIJE

OPIS POSTOJEĆEG STANJA:

Godine 1963. započinje prva faza izgradnje lučice Resnik, na nagovor lokalnih ribara, betoniraju se hridi koje se nalaze na tom području kako bi se mogli privezivati brodice. Prije postavljanja armirano-betonske površine, područje među hridima se puni šljunkom s obližnje plaže.

Godine 1969. započinje druga faza projekta, gdje tadašnja JNA započinje izgradnju lukobrana. Razlog je što se vojna baza "Divulje" nalazi 1 nm udaljenu od Lučice na Resniku te u slučaju savezničkih bombardiranja brodovi bi bili raspodjeljeni u neposrednoj blizini no ne na istom mjestu. Na lukobranu se nalazi zabetonirani poklopac gdje je JNA postavila naboje u slučaju neželjenih prijetnji koje bi se mogle okoristiti pristaništem, no na sreću nije bilo potrebe za takvom intervencijom.

Do danas, 50 godina kasnije, u lučicu nije uloženo ništa, osim što su lokalni ribari i rekreativni pomorci nadogradili dodatna privezišta o svom trošku, te zbog manjka ulaganja u održavanje, lučica se nalazi u jako lošem stanju, gdje dolazimo do zaključka da bi se projekt izveo što kvalitetnije, cijela druga faza zbog svoje male dubine, te samim time i jeftinije investicije, će se otkloniti i postaviti će se nova konstrukcija, dok na dijelu prve faze izgradnje se otklanja sve osim prirodnih hridi na kojima je sagrađena te se nakon armiranobetonske završne površine cijela lučica popločava kamenim pločama.

Slika 1.1 Prilaz lučici izgrađen na hridima i nabačaju

Slika 1.2 Istočni lukobran

Slika 1.3 Južni lukobran

Slika 1.4 Prilaz južnom lukobranu

Slika 1.5 Tlocrt i presjek postojećeg stanja

Slika 1.6 Tlocrtni pregled izgradnje po etapama

2. ANALIZA VJETROVALNE KLIME

RASPOLOŽIVI PODACI O VJETRU:

Na predmetnoj lokaciji ne raspolaže se mjerenjima valova pa će se dugoročna valna prognoza za potrebe analize valovanja napraviti na osnovu raspoloživih mjerenja vjetra. Raspolaže se službenim podacima Državnog hidrometeorološkog zavoda, mjerenih na Meteorološkoj postaji Split – Marjan u razdoblju 2000.–2009. godine. Godišnja razdioba brzine vjetra u ovisnosti o smjeru vjetra za postaju Split prikazana je grafički na ruži vjetra, a numeričke vrijednosti dane su u tablici kontigencije. Brzine su izražene razredima brzina koji odgovaraju stupnjevima Beaufortove ljestvice (Bf)

			Brzina		Visina vala			
		km/h	m/s	ČV	mph	m	ft	
0 Bf	tišina	< 1	0-0,2	< 1	< 1	-	-	
1 Bf	lahor	01.05.18	0,3-1,5	01.03.18	01.03.18	0,1(0,1)	0,25(0,25)	
2 Bf	povjetarac	06.11.18	1,6-3,3	04.06.18	04.07.18	0,2(0,3)	0,5(1)	
3 Bf	slabi	01.12.19	3,4-5,4	07.10.18	08.12.18	0,6(1)	2(3)	
4 Bf	umjereni	20-28	5,5-7,9	01.11.16	13-18	1(1,5)	3,5(5)	
5 Bf	umjereno jaki	29-38	8,0-10,7	17-21	19-24	2(2,5)	6(8,5)	
6 Bf	jaki	39-49	10,8-13,8	22-27	25-31	3(4)	9,5(13)	
7 Bf	žestoki	50-61	13,9-17,1	28-33	32-38	4(5,5)	13,5(19)	
8 Bf	olujni	62-74	17,2-20,7	34-40	39-46	5,5(7,5)	18(25)	
9 Bf	jaki olujni	75-88	20,8-24,4	41-47	47-54	7(10)	23(32)	
10 Bf	orkanski	89-102	24,5-28,4	48-55	55-63	9(12,5)	29(41)	
11 Bf	jaki orkanski	103-117	28,5-32,6	56-63	64-72	11,5(16)	37(52)	
12 Bf	orkan	>=118	>=32,7	>=64	>=73	14(-)	45(-)	

Slika 2.1 Beaufortova ljestvica

jač. (Bf)	0	1	2	3	4	5	6	7	8	9	10	11	12	
brz. (m/s)	0.0- 0.2	0.3- 1.5	1.6- 3.3	3.4- 5.4	5.5- 7.9	8.0- 10.7	10.8- 13.8	13.9- 17.1	17.2- 20.7	20.8- 24.4	24.5- 28.4	28.5- 32.6	32.7- 36.9	zbroj
Ν		14.8	16.6	4.9	2.0	0.6	0.2	0.01						39.0
NNE		11.7	27.5	21.9	25.5	19.2	6.5	1.2	0.2	0.1				113.9
NE		17.4	60.1	50.1	42.4	28.5	7.9	2.0	0.6	0.06	0.02			209.0
ENE		13.8	38.1	17.9	4.5	1.4	0.2	0.03						76.0
E		9.1	13.7	8.3	2.4	0.2	0.01	0.02						33.8
ESE		10.5	14.9	15.9	22.1	14.5	5.7	1.1	0.01					84.7
SE		10.6	11.9	14.3	22.3	24.2	13.3	3.4	0.3					100.4
SSE		11.0	13.1	3.2	2.6	2.6	1.8	0.5	0.06					34.9
S		11.3	10.2	1.6	1.3	1.2	0.8	0.5	0.01					27.0
SSW		11.1	27.5	6.1	1.8	1.3	0.7	0.2	0.02					48.7
SW		21.0	49.2	21.8	2.5	0.3	0.1	0.01						94.9
WSW		14.0	20.2	12.7	1.7	0.02								48.7
W		4.0	6.3	1.9	0.2	0.01								12.4
WNW		5.3	9.5	1.7	0.05	0.01								16.6
NW		9.5	16.6	4.2	0.4	0.03	0.02							30.8
NNW		10.8	10.2	2.7	0.5	0.09								24.3
С	5.1													5.1
zbroj	5.1	186.0	345.7	189.3	132.3	94.0	37.2	9.0	1.2	0.2	0.02			1000.0

Slika 2.2 Relativna tablica kontigencije po klasama jačine (Bf) i brzine (m/s) vjetra za Split u razdoblju 2000.–2009.

jač. (Bf)	0	1	2	3	4	5	6	7	8	9	10	11	12	
brz. (m/s)	0.0- 0.2	0.3- 1.5	1.6- 3.3	3.4- 5.4	5.5- 7.9	8.0- 10.7	10.8- 13.8	13.9- 17.1	17.2- 20.7	20.8- 24.4	24.5- 28.4	28.5- 32.6	32.7- 36.9	zbroj
Ν		1274	1427	419	170	54	13	1						3358
NNE		1010	2368	1881	2193	1648	563	104	19	10				9796
NE		1494	5175	4307	3645	2453	678	172	49	5	2			17980
ENE		1186	3281	1544	391	118	15	3						6538
E		786	1181	714	210	15	1	2						2909
ESE		901	1281	1369	1902	1248	490	94	1					7286
SE		910	1025	1233	1919	2084	1142	294	29					8636
SSE		949	1125	277	227	220	158	42	5					3003
S		976	878	134	115	101	72	43	1					2320
SSW		959	2366	525	151	110	56	20	2					4189
SW		1807	4234	1873	219	25	10	1						8169
WSW		1204	1742	1096	143	2								4187
W		346	538	166	16	1								1067
WNW		455	817	150	4	1								1427
NW		819	1431	365	31	3	2							2651
NNW		929	876	231	45	8								2089
С	438													438
zbroj	438	16005	29745	16284	11381	8091	3200	776	106	15	2			86043

Slika 2.3 Apsolutna tablica kontigencije po klasama jačine (Bf) i brzine (m/s) vjetra za Split u razdoblju 2000.–2009. Najčešći smjerovi vjetra na području Splita su NE (20.9%), NNE (11.4%), SE (10.0%) slučajeva od ukupnog broja podataka tijekom godine. To su poznati vjetrovi bura i jugo. Bura je suh, hladan i mahovit sjeveroistočni vjetar povezan s prodorom hladnog zraka iz hladnijih krajeva. Bura dolazi s kopna i puše uglavnom smjerom prema moru. Puše obično velikom, ponekad orkanskom snagom. Za razliku od bure, jugo puše jednoličnom brzinom i stvara velike valove. Jugo ili Široko puše s jugoistoka na Jadranu, a obično je povezan s nadolazećom ciklonom iz zapadnog Sredozemlja. Jugo ili južina je naziv za vrijeme koje donosi taj vjetar i koje karakteriziraju izrazito loši biometeorološki uvjeti. Uz ta dva najčešća vjetra treba spomenuti i vjetar iz smjera SW, koji se na području Splita javlja u 9.5 % slučajeva na godišnjoj razini. To je Lebić koji nastaje kad ciklonska oblast prelazi Zapadnom Europom prema Genovskom zaljevu. Stvara velike valove i muti more. Naročito je snažan u hladnije doba godine, tijekom jeseni i zime.

Slika 2.4 Godišnja ruža vjetra za Split u razdoblju 2000.-2009.

EFEKTIVNE DULJINE PRIVJETRIŠTA:

Predmetna lokacija izložena je prvenstveno vjetrovnim valovima, generiranim vjetrovima Juga i Lebića te nešto manjeg inteziteta i vjetrovima oštra. Za smjer SE I SSE podaci o vjetru pokazuju relativno velik značaj u odnosu na druge smjerove vjetra, budući da se u tom smjeru nalazi najveće privjetrište koje prolazi kroz Marjanska vrata, te nam je baš taj smjer najnepovoljniji.

Uz nabrojane vjetrove, iznimno je jaka i bura, međutim zbog lokacije projekta, proračun efektivne sile je zanemariv jer nam je privjetrište manje od 1km

Proračun efektivne duljine privjetrišta za sve smjerove je proveden metodom koja se uobičajeno koristi u svjetskoj praksi, a dana je literaturom (Shore Protection Manual, 1984). U svakom od odabranih smjerova postavi se centralna zraka koja kao ishodište ima točku ispred razmatranog akvatorija. Nakon toga se sa rotacijom od 6° u smjeru kazaljke na satu (do +42°) i suprotno od kazaljke na satu (do -42°) postavljaju pravci kroz istu ishodišnu točku. Određuju se duljine svake zrake od ishodišta do prve točke obale te se proračunava suma njihovih projekcija na centralnu zraku. Ta suma se dijeli sa sumom kosinusa kuteva centralne zrake i ostalih rotiranih zraka, čime se dobiva i vrijednost duljine efektivnog privjetrišta prema izrazu

$$F_{eff} = \frac{\sum_{i} F_i cos \alpha_i^2}{\sum_{i} cos \alpha_i}$$

Slika 2.5 Skica za izračun efektivne duljine privjetrišta za centralni smjer ENE (67.5°)

Kut α (°)	cosα	Fi (km)	Fi×(cos) ²	
42	0.7431448	0.1	0.0552264	
36	0.809017	0.1	0.0654508	
30	0.8660254	0.1	0.075	
24	0.9135455	0.1	0.0834565	
18	0.9510565	0.2	0.1809017	
12	0.9781476	0.2	0.1913545	
6	0.9945219	0.3	0.2967221	
0	1	0.6	0.6	
-6	0.9945219	4	3.9562952	
-12	0.9781476	5	4.7838636	
-18	0.9510565	6.9	6.2411086	
-24	0.9135455	9.9	8.2621965	
-30	0.8660254	12.6	9.45	
-36	0.809017	8.9	5.8251256	
-42	0.7431448	9.2	5.0808309	
Σ	13.510917		45.147533	
Feff	3.3415594			

Slika 2.6 Proračun određivanja efektivne duljine privjetrišta za smjer ENE

Slika 2.7 Skica za izračun efektivne duljine privjetrišta za centralni smjer E (90°)

Kut α (°)	cosα	Fi (km)	Fi×(cos) ²
42	0.7431448	0.1	0.0552264
36	0.809017	0.2	0.1309017
30	0.8660254	0.3	0.225
24	0.9135455	0.6	0.5007392
18	0.9510565	4	3.618034
12	0.9781476	5	4.7838636
6	0.9945219	<mark>6.</mark> 9	6.8246092
0	1	9.9	9.9
-6	0.9945219	12.6	12.46233
-12	0.9781476	<mark>8.</mark> 9	8.5152773
-18	0.9510565	9.2	8.3214782
-24	0.9135455	7.5	6.2592398
-30	0.8660254	7	5.25
-36	0.809017	32.9	21.53333
-42	0.7431448	27.8	15.352946
Σ	13.510917		103.73297
Feff	7.6777151		

Slika 2.8 Proračun određivanja efektivne duljine privjetrišta za smjer E

Slika 2.9 Skica za izračun efektivne duljine privjetrišta za centralni smjer ESE (112.5°)

Kut α (°)	cosα	Fi (km)	Fi×(cos) ²	
42	0.7431448	0.6	0.3313585	
36	0.809017	4	2.618034	
30	0.8660254	5	3.75	
24	0.9135455	6.9	5.7585006	
18	0.9510565	9.9	8.9546341	
12	0.9781476	12.6	12.055336	
6	0.9945219	8.9	8.8027568	
0	1	9.2	9.2	
-6	0.9945219	7.5	7.4180535	
-12	0.9781476	7	6.6974091	
-18	0.9510565	32.9	29.75833	
-24	0.9135455	27.8	23.200915	
-30	0.8660254	7.9	5.925	
-36	0.809017	7.2	4.7124612	
-42	0.7431448	6.4	3.5344911	
Σ	13.510917		132.71728	
Feff	9.8229659			

Slika 2.10 Proračun određivanja efektivne duljine privjetrišta za smjer ESE

Slika 2.11 Skica za izračun efektivne duljine privjetrišta za centralni smjer SE (135°)

Kut α (°)	cosα	Fi (km)	Fi×(cos)²	
42	0.7431448	12.6	6.9585293	
36	0.809017	8.9	5.8251256	
30	0.8660254	9.2	6.9	
24	0.9135455	7.5	6.2592398	
18	0.9510565	7	6.3315595	
12	0.9781476	32.9	31.477823	
6	0.9945219	27.8	27.496252	
0	1	7.9	7.9	
-6	0.9945219	7.2	7.1213314	
-12	0.9781476	6.4	6.1233455	
-18	0.9510565	5.7	5.1556984	
-24	0.9135455	4.6	3.8390004	
-30	0.8660254	4.3	3.225	
-36	0.809017	4	2.618034	
-42	0.7431448	3.5	1.9329248	
Σ	13.510917		129.16386	
Feff	9.5599625			

Slika 2.12 Proračun određivanja efektivne duljine privjetrišta za smjer SE

Slika 2.13 Skica za izračun efektivne duljine privjetrišta za centralni smjer SSE (157.5°)

Kut α (°)	cosα	Fi (km)	Fi×(cos) ²
42	0.7431448	7	3.8658496
36	0.809017	32.9	21.53333
30	0.8660254	27.8	20.85
24	0.9135455	7.9	6.5930659
18	0.9510565	7.2	6.5124612
12	0.9781476	6.4	6.1233455
6	0.9945219	5.7	5.6377207
0	1	4.6	4.6
-6	0.9945219	4.3	4.2530173
-12	0.9781476	4	3.8270909
-18	0.9510565	3.5	3.1657797
-24	0.9135455	3.3	2.7540655
-30	0.8660254	3.1	2.325
-36	0.809017	3.1	2.0289763
-42	0.7431448	3.1	1.7120191
Σ	13.510917		95.781721
Feff	7.0892093		

Slika 2.14 Proračun određivanja efektivne duljine privjetrišta za smjer SSE

Slika 2.15 Skica za izračun efektivne duljine privjetrišta za centralni smjer S (180°)

Kut α (°)	cosα	Fi (km)	Fi×(cos) ²
42	0.7431448	7.2	3.9763025
36	0.809017	6.4	4.1888544
30	0.8660254	5.7	4.275
24	0.9135455	4.6	3.8390004
18	0.9510565	4.3	3.8893865
12	0.9781476	4	3.8270909
6	0.9945219	3.5	3.4617583
0	1	3.3	3.3
-6	0.9945219	3.1	3.0661288
-12	0.9781476	3.1	2.9659955
-18	0.9510565	3.1	2.8039763
-24	0.9135455	3.1	2.5871524
-30	0.8660254	3.2	2.4
-36	0.809017	3.5	2.2907797
-42	0.7431448	3.7	2.0433777
Σ	13.510917		48.914803
Feff	3.620391		

Slika 2.16 Proračun određivanja efektivne duljine privjetrišta za smjer S

Slika 2.17 Skica za izračun efektivne duljine privjetrišta za centralni smjer SSW (202.5°)

Kut α (°)	cosα	Fi (km)	Fi×(cos) ²
42	0.7431448	4.3	2.3747362
36	0.809017	4	2.618034
30	0.8660254	3.5	2.625
24	0.9135455	3.5	2.9209786
18	0.9510565	3.1	2.8039763
12	0.9781476	3.1	2.9659955
6	0.9945219	3.1	3.0661288
0	1	3.1	3.1
-6	0.9945219	3.2	3.1650362
-12	0.9781476	3.5	3.3487046
-18	0.9510565	3.7	3.3466814
-24	0.9135455	0.8	0.6676522
-30	0.8660254	0.7	0.525
-36	0.809017	0.6	0.3927051
-42	0.7431448	0.5	0.2761321
Σ	13.510917		34.196761
Feff	2.5310466		

Slika 2.18 Proračun određivanja efektivne duljine privjetrišta za smjer SSW

Slika 2.19 Skica za izračun efektivne duljine privjetrišta za centralni smjerove E,ESE,SE,SSE

FORMIRANJE UZORKA VJETRA ZA DUGOROČNE VALNE PROGNOZE

Kada se ne raspolaže s mjerenjima valova, uzorak valova se može napraviti na temelju podataka o mjerenju vjetra.

Statističke veličine (varijable) valnih visina, kao što su Hs (značajna valna visina) i Hmax (maksimalna valna visina) dobiju se u slučaju kada se raspolaže s mjerenjima valova, iz valnog zapisa valnog obrisa u vremenu na nekoj točki. Ovisno o vremenu mjerenja ti podaci označuju ekstreme za razmatrani period. Svakoj veličini (varijabli) pripada osnovna distribucija vjerojatnosti za koju se pretpostavlja da je Fisher-Tippettovog tipa, a što ima za posljedicu da je odgovarajuća distribucija vjerojatnosti ekstrema istog tipa. Ovisno o vremenskom razdoblju razmatranja ekstremnog valnog parametra razlikuju se model godišnjih ekstremnih vrijednosti s pripadajućom distribucijom vjerojatnosti. Pošto se ovdje raspolaže sa tablicom kontigencije vjetra, koristit će se drugi model - ekstremnih vrijednosti koje premašuju određeni prag sa pripadajućom log-normalnom distribucijom. S obzirom da uzorak Hs za dugoročnu prognozu trebaju predstavljati pojedine kratkoročne valne situacije sa većim valovima (vjetrom koji ih stvara) ovdje se odabire prag brzine vjetra u iznosu od 3,4 - 5,4 m/s, što odgovara brzini vjetra od 3 Bf

Smjer	Jačina vjetra <mark>(</mark> Bf)						
	3	4	5	6	7	8	
ENE	1544	391	118	15	3	0	
ENE	714	210	15	1	2	0	
ESE	1369	1902	1248	490	94	1	
SE	1233	1919	2084	1142	294	29	
SSE	277	227	220	158	42	5	
S	134	115	101	72	43	1	
SSW	525	151	110	56	20	2	

Slika 2.20 Uzorci vjetra po odabranim smjerovima

Za određivanje karakteristika vala u dubokoj vodi i ostalih parametara za dimenzioniranje objekata korištena je metoda "Groen-Dorrenstein". Ova metoda služi za određivanje uzorka H_s iz uzorka podataka o vjetru. Na temelju već određene duljine privjetrišta te smjera i brzine vjetra iz dijagrama Groen-Dorrenstein očitavaju se parametri vala u dubokom moru. Određeni parametri su period (T) i visina vala (H_s).

Slika 2.21 Groen-Dorrenstein dijagram

Smion	Brzina vjetra (m/s)	5.4	7.9	10.7	13.8	17.1	20.7	
Snjer	Jačina vjetra (Bf)	3	4	5	6	7	8	
	Privjetrište (km)	m) Feff=3.34 km						
ENIE	Učestalost	1544	391	118	15	3	0	
EINE	Ts (s)	1.6	1.8	1.95	2.2	2.7	Х	
	Hs (m)	0.25	0.37	0.5	0.65	1.05	Х	
	Privjetrište (km)	Feff=7.67	km					
	Učestalost	714	210	15	1	2	0	
E	Ts (s)	1.8	2.15	2.5	2.7	3.15	Х	
	Hs (m)	0.32	0.5	0.7	0.93	1.5	Х	
	Privjetrište (km)	Feff=9.82	km					
ESE	Učestalost	1369	1902	1248	490	94	1	
	Ts (s)	2.1	2.5	2.7	2.9	3.5	4.2	
	Hs (m)	0.37	0.6	0.8	1.05	1.8	2.45	
	Privjetrište (km)	Feff=9.55 km						
eE	Učestalost	1233	1919	2084	1142	294	29	
JE JE	Ts (s)	2.1	2.5	2.65	2.85	3.45	4.1	
	Hs (m)	0.37	0.6	0.8	1	1.7	2.4	
	Privjetrište (km)	Feff=7.09 km						
005	Učestalost	277	227	220	158	42	5	
SSE	Ts (s)	1.8	2.15	2.4	2.7	3.2	3.8	
	Hs (m)	0.32	0.5	0.65	0.9	1.45	2.2	
	Privjetrište (km)	Feff=3.62	km					
	Učestalost	134	115	101	72	43	1	
5	Ts (s)	1.1	1.8	1.95	1.97	2.8	3.35	
	Hs (m)	0.25	0.38	0.5	0.67	1.1	1.6	
	Privjetrište (km)	Feff=2.53	km					
CC1M	Učestalost	525	151	110	56	20	2	
3377	Ts (s)	1	1.6	1.8	1.9	2.5	3.1	
	Hs (m)	0.21	0.33	0.43	0.58	0.95	1.35	

Slika 2.22 Uzorak značajnih valnih visina H_{s} i pripadajućih valnih perioda

DUGOROČNE VALNE PROGNOZE

Slika 2.23 Prikaz funkcija distribucije značajne valne visine za smjer vjetra ENE

Т	Q	1-Q	Hs(Pareto)	Hs(Gumbel)	
5	0.00086915	0.99913085	0.75	0.7	
50	0.00008692	0.99991309	1.09	0.89	
100	0.00004346	0.99995654	1.23	0.94	

Slika 2.24 Prikaz značajnih valnih visina za smjer vjetra ENE

Slika 2.25 Prikaz funkcija distribucije značajne valne visine za smjer vjetra E

Т	Q	1-Q	Hs(Pareto)	Hs(Gumbel)	
5	0.00191083	0.99808917	0.65	0.64	
50	0.00019108	0.99980892	0.96	0.83	
100	0.00009554	0.99990446	1.08	0.88	

Slika 2.26 Prikaz značajnih valnih visina za smjer vjetra E

SMJER ESE

Slika 2.27 Prikaz funkcija distribucije značajne valne visine za smjer vjetra ESE

Т	Q 1-Q H		Hs(Pareto)	Hs(Gumbel)	
5	0.00035266	5266 0.99964734 3		1.76	
50	0.00003527	0.99996473	4.3	2.08	
100	0.00001763	0.99998237	5.03	2.19	

Slika 2.28 Prikaz značajnih valnih visina za smjer vjetra ESE

Slika 2.29 Prikaz funkcija distribucije značajne valne visine za smjer vjetra SE

Т	Q	1-Q	Hs(Pareto)	Hs(Gumbel)	
5	0.00026862	0.99973138	2.85	2.32	
50	0.00002686	0.99997314	4.51	2.89	
100	0.00001343	0.99998657	5.15	3.06	

Slika 2.30 Prikaz značajnih valnih visina za smjer vjetra SE

Slika 2.31 Prikaz funkcija distribucije značajne valne visine za smjer vjetra SSE

Т	Q 1-Q I		Hs(Pareto)	Hs(Gumbel)	
5	0.00193757	0.99806243	1.62	1.59	
50	0.00019376	0.99980624	2.43	2.07	
100	0.00009688	0.99990312	2.76	2.22	

Slika 2.32 Prikaz značajnih valnih visina za smjer vjetra SSE

Slika 2.33 Prikaz funkcija distribucije značajne valne visine za smjer vjetra S

Т	Q	1-Q	Hs(Pareto)	Hs(Gumbel)	
5	0.00386266	0.99613734 1.06		1.15	
50	0.00038627	0.99961373	1.47	1.5	
100	0.00019313	0.99980687	1.63	1.6	

Slika 2.34 Prikaz značajnih valnih visina za smjer vjetra S

Slika 2.35 Prikaz funkcija distribucije značajne valne visine za smjer vjetra SSW

Т	Q	Q 1-Q		Hs(Gumbel)	
5	0.00208333	0.99791667	1.08	0.92	
50	0.00020833	0.99979167	1.91	1.21	
100	0.00010417	0.99989583	2.25	1.3	

Slika 2.36 Prikaz značajnih valnih visina za smjer vjetra S

Smjer	ENE	F	ГСГ	сг	CCL	c	CC14/
Т	ENE	ENE E ESE	ESE	SE	33E	3	33VV
5	0.7	0.64	1.76	2.32	1.59	1.15	0.92
50	0.89	0.83	2.08	2.89	2.07	1.5	1.21
100	0.94	0.88	2.19	3.06	2.22	1.6	1.3

Slika 2.37 Prikaz odabranih valnih visina za određenje smjerove u periodu od 5,50,100 godina

3. IZRAČUN DJELOVANJA VALOVA NA LUKOBRAN I UNUTAR LUKE REFRAKCIJA:

H_s-valna visina dobivena Gumbelovom metodom za odabrani smjer vjetra T-iščitano iz Groen-Dorrenstein dijagrama s obzirom na duljinu privjetrišta i valnu visinu L_{privjetrišta}-duljina privjetrišta za odabran smjer izražena u km

	ESE	SE	SSE
H _S	2.19	3.06	2.22
Т	4.2	4.6	4.1
L _{privjetrišta}	9.82	9.55	7.09

Slika 3.1 Tablica dubokovodnih parametara vala

Duboko more $\rightarrow \frac{d}{L} > \frac{1}{2} \rightarrow \frac{27,55}{2} = L = 13,8 m$

Smjer ESE:

$$L_0 = \frac{g \cdot T^2}{2\pi} = \frac{9,81 \cdot 4,2^2}{2\pi} = 27,55m \rightarrow \frac{D}{L_0} = \frac{4,5}{27,55} = 0,05 < \mathbf{0}, \mathbf{16} < 0,5 \rightarrow Srednje \ more$$

Iteracija (1):

$$L_{d=13,8}^{1} = \frac{g \cdot T^{2}}{2\pi} \cdot \tanh\left(\frac{2\pi \cdot 13,8}{20}\right) = 27,53 m$$
$$L_{d=13,8}^{1} = \frac{g \cdot T^{2}}{2\pi} \cdot \tanh\left(\frac{2\pi \cdot 13,8}{27,53}\right) = 27,44 m \dots$$
$$\dots L_{d=13,8}^{1} = \frac{g \cdot T^{2}}{2\pi} \cdot \tanh\left(\frac{2\pi \cdot 13,8}{27,44}\right) = 27,44 m$$

Iteracija (2)

$$L_{d=4,5}^{2} = \frac{g \cdot T^{2}}{2\pi} \cdot \tanh\left(\frac{2\pi \cdot 4,5}{20}\right) = 24,46 m$$
$$L_{d=4,5}^{2} = \frac{g \cdot T^{2}}{2\pi} \cdot \tanh\left(\frac{2\pi \cdot 4,5}{24,46}\right) = 22,57 m \dots$$
$$\dots L_{d=4,5}^{2} = \frac{g \cdot T^{2}}{2\pi} \cdot \tanh\left(\frac{2\pi \cdot 4,5}{23,15}\right) = 23,14 m$$

Izračun kuta refrakcije:

$$\alpha_{1} = 38^{\circ}; L_{1} = 27, 44; L_{2} = 23, 14$$
$$\frac{L_{1}}{\sin\alpha_{1}} = \frac{L_{2}}{\sin\alpha_{2}} \rightarrow \sin\alpha_{2} = \frac{L_{2} \cdot \sin\alpha_{1}}{L_{1}} = 0,5192 \rightarrow \alpha_{2} = 31,28^{\circ}$$

Određivanje koeficijenta uplićivanja (*K_s*):

$$c_0 = \frac{L_0}{T} = \frac{27,55}{4,2} = 6,56 \ m/s; c_{g0} = \frac{1}{2} \cdot c_0 = 3,28 \ m/s$$

 $L_{d=4,5} = 23,14 m$

$$c_{gd} = \frac{1}{2} \cdot \left[1 + \frac{\frac{4\pi d}{L_d}}{\sinh\left(\frac{4\pi d}{L_d}\right)} \right] \cdot c_d; c_d = \frac{L_d}{T} = \frac{23,14}{4,2} = 5,51 \, m/s$$

$$c_{gd} = 0,714 \cdot c_d = 3,93 \, m/s$$

$$K_s = \sqrt{\frac{c_{g0}}{c_{gd}}} = \sqrt{\frac{3,28}{3,93}} = 0,91$$

Određivanje koeficijenta uplićivanja (*K_r*):

$$K_r = \sqrt{\frac{\sqrt{1 - \sin^2 \alpha_1}}{\sqrt{1 - \sin^2 \alpha_2}}} = \left(\frac{1 - \sin^2 \alpha_1}{1 - \sin^2 \alpha_2}\right)^{\frac{1}{4}} = \left(\frac{1 - \sin^2 38}{1 - \sin^2 31, 28}\right)^{\frac{1}{4}} = 0,96$$

Visina vala ispred lukobrana (d=4,5 m):

$$H_A = H_0 \cdot K_s \cdot K_r = 2,19 \cdot 0,91 \cdot 0,96 = 1,91 m$$

Smjer SE:

$$L_0 = \frac{g \cdot T^2}{2\pi} = \frac{9,81 \cdot 4,6^2}{2\pi} = 33,05m \to \frac{D}{L_0} = \frac{4,5}{33,05} = 0,05 < \mathbf{0}, \mathbf{14} < 0,5 \to Srednje \ more$$

Iteracija (1):

$$L_{d=13,8}^{1} = \frac{g \cdot T^{2}}{2\pi} \cdot \tanh\left(\frac{2\pi \cdot 13,8}{20}\right) = 33,03 m$$
$$L_{d=13,8}^{1} = \frac{g \cdot T^{2}}{2\pi} \cdot \tanh\left(\frac{2\pi \cdot 13,8}{33,03}\right) = 32,69 m \dots$$
$$\dots L_{d=13,8}^{1} = \frac{g \cdot T^{2}}{2\pi} \cdot \tanh\left(\frac{2\pi \cdot 13,8}{32,71}\right) = 32,71 m$$

Iteracija (2)

$$L_{d=4,5}^{2} = \frac{g \cdot T^{2}}{2\pi} \cdot \tanh\left(\frac{2\pi \cdot 4,5}{20}\right) = 29,34 m$$
$$L_{d=4,5}^{2} = \frac{g \cdot T^{2}}{2\pi} \cdot \tanh\left(\frac{2\pi \cdot 4,5}{29,34}\right) = 24,64 m \dots$$
$$\dots L_{d=4,5}^{2} = \frac{g \cdot T^{2}}{2\pi} \cdot \tanh\left(\frac{2\pi \cdot 4,5}{26,19}\right) = 26,20 m$$

Izračun kuta refrakcije:

$$\alpha_{1} = \mathbf{15}^{\circ}; L_{1} = \mathbf{32}, \mathbf{71}; L_{2} = \mathbf{26}, \mathbf{20}$$
$$\frac{L_{1}}{\sin\alpha_{1}} = \frac{L_{2}}{\sin\alpha_{2}} \rightarrow \sin\alpha_{2} = \frac{L_{2} \cdot \sin\alpha_{1}}{L_{1}} = 0,2073 \rightarrow \alpha_{2} = 11,96^{\circ}$$

Određivanje koeficijenta uplićivanja (K_s):

$$c_{0} = \frac{L_{0}}{T} = \frac{27,55}{4,6} = 5,99 \ m/s; c_{g0} = \frac{1}{2} \cdot c_{0} = 2,99 \ m/s$$
$$L_{d=4,5} = 26,20$$
$$c_{gd} = \frac{1}{2} \cdot \left[1 + \frac{\frac{4\pi d}{L_{d}}}{\sinh\left(\frac{4\pi d}{L_{d}}\right)} \right] \cdot c_{d}; c_{d} = \frac{L_{d}}{T} = \frac{26,20}{4,6} = 5,7 \ m/s$$

 $c_{gd} = 0,753 \cdot c_d = 4,29 \, m/s$

$$K_s = \sqrt{\frac{c_{g0}}{c_{gd}}} = \sqrt{\frac{2,99}{4,29}} = 0,83$$

Određivanje koeficijenta uplićivanja (K_r):

$$K_r = \sqrt{\frac{\sqrt{1 - \sin^2 \alpha_1}}{\sqrt{1 - \sin^2 \alpha_2}}} = \left(\frac{1 - \sin^2 \alpha_1}{1 - \sin^2 \alpha_2}\right)^{\frac{1}{4}} = \left(\frac{1 - \sin^2 15}{1 - \sin^2 11,96}\right)^{\frac{1}{4}} = 0,99$$

Visina vala ispred lukobrana (d=4,5 m):

$$H_A = H_0 \cdot K_s \cdot K_r = 3,06 \cdot 0,83 \cdot 0,99 = 2,51 m$$

Smjer SSE:

$$L_0 = \frac{g \cdot T^2}{2\pi} = \frac{9,81 \cdot 4,1^2}{2\pi} = 26,26m \rightarrow \frac{D}{L_0} = \frac{4,5}{26,26} = 0,05 < \mathbf{0},\mathbf{17} < 0,5 \rightarrow Srednje \ more$$

Iteracija (1):

$$L_{d=13,8}^{1} = \frac{g \cdot T^{2}}{2\pi} \cdot \tanh\left(\frac{2\pi \cdot 13,8}{20}\right) = 26,23 m$$
$$L_{d=13,8}^{1} = \frac{g \cdot T^{2}}{2\pi} \cdot \tanh\left(\frac{2\pi \cdot 13,8}{26,23}\right) = 26,18 m \dots$$
$$\dots L_{d=13,8}^{1} = \frac{g \cdot T^{2}}{2\pi} \cdot \tanh\left(\frac{2\pi \cdot 13,8}{26,17}\right) = 26,18 m$$

Iteracija (2)

$$L_{d=4,5}^{2} = \frac{g \cdot T^{2}}{2\pi} \cdot \tanh\left(\frac{2\pi \cdot 4,5}{20}\right) = 20,81 m$$
$$L_{d=4,5}^{2} = \frac{g \cdot T^{2}}{2\pi} \cdot \tanh\left(\frac{2\pi \cdot 4,5}{20,81}\right) = 22,99 m \dots$$
$$\dots L_{d=4,5}^{2} = \frac{g \cdot T^{2}}{2\pi} \cdot \tanh\left(\frac{2\pi \cdot 4,5}{22,36}\right) = 22,37 m$$

Izračun kuta refrakcije:

$$\begin{aligned} \alpha_1 &= 7^\circ; L_1 = 26, 18; L_2 = 22, 37\\ \frac{L_1}{\sin\alpha_1} &= \frac{L_2}{\sin\alpha_2} \to \sin\alpha_2 = \frac{L_2 \cdot \sin\alpha_1}{L_1} = 0,1041 \to \alpha_2 = 5,98^\circ \end{aligned}$$

Određivanje koeficijenta uplićivanja (K_s):

$$c_{0} = \frac{L_{0}}{T} = \frac{27,55}{4,1} = 6,72 \ m/s; c_{g0} = \frac{1}{2} \cdot c_{0} = 3,36 \ m/s$$
$$L_{d=4,5} = 22,37$$
$$c_{gd} = \frac{1}{2} \cdot \left[1 + \frac{\frac{4\pi d}{L_{d}}}{\sinh\left(\frac{4\pi d}{L_{d}}\right)} \right] \cdot c_{d}; c_{d} = \frac{L_{d}}{T} = \frac{22,37}{4,1} = 5,46 \ m/s$$
$$c_{gd} = 0,5 \cdot c_{d} = 2,73 \ m/s$$

 $k_{g0} = \begin{bmatrix} c_{g0} \\ 3,36 \end{bmatrix} = \begin{bmatrix} 3,36 \\ -1 \end{bmatrix}$

$$K_s = \sqrt{\frac{c_{g0}}{c_{gd}}} = \sqrt{\frac{3,30}{2,73}} = 1,11$$

Određivanje koeficijenta uplićivanja (K_r):

$$K_r = \sqrt{\frac{\sqrt{1 - \sin^2 \alpha_1}}{\sqrt{1 - \sin^2 \alpha_2}}} = \left(\frac{1 - \sin^2 \alpha_1}{1 - \sin^2 \alpha_2}\right)^{\frac{1}{4}} = \left(\frac{1 - \sin^2 7}{1 - \sin^2 5,98}\right)^{\frac{1}{4}} = 0,99$$

Visina vala ispred lukobrana (d=4,5 m):

$$H_A = H_0 \cdot K_s \cdot K_r = 2,22 \cdot 1,11 \cdot 0,99 = 2,44 m$$

LOM VALA:

$$L_{d=4,5} = \frac{g \cdot T^2}{2\pi} \cdot \tanh\left(\frac{2\pi \cdot 4,5}{20}\right) = 29,34 m$$

$$L_{d=4,5} = \frac{g \cdot T^2}{2\pi} \cdot \tanh\left(\frac{2\pi \cdot 4,5}{29,34}\right) = 24,64 m \dots$$

$$\dots L_{d=4,5} = \frac{g \cdot T^2}{2\pi} \cdot \tanh\left(\frac{2\pi \cdot 4,5}{26,19}\right) = 26,20 m$$

$$\left(\frac{H}{L}\right)_{max} = \frac{1}{7} \cdot \tanh\left(\frac{2 \cdot \pi \cdot D}{L}\right) = \frac{1}{7} \cdot \tanh\left(\frac{2 \cdot \pi \cdot 4,5}{26,20}\right) = 0,113$$

$$\frac{H}{L} = \frac{2,51}{26,20} = 0,096 < 0,113 \rightarrow ne \ dolazi \ do \ loma \ vala$$

DIFRAKCIJA:

Slika 3.2 Odabrana točka za proračun vala s unutrašnje strane lukobrana

Slika 3.3 Nomogram za ulazni kut od 105°

$$K_d = 0,16 \ o\check{c}itano$$

 $H' = H_A \cdot K_d = 2,51 \cdot 0,16 = 0,4 \ m$

ANALIZA UDARA VALA NA LUKOBRAN (PLIMA):

Slika 3.4 Prikaz potpunog stojnog vala na lukobran (plima)

$$d = d_0 + d_{plima} = 4,5 + 0,88 = 5,38$$

$$\Delta \gamma = \frac{\pi \cdot H^2}{L} \cdot \coth\left(\frac{2\pi d}{L}\right) = \frac{\pi \cdot 2,51^2}{26,2} \cdot \coth\left(\frac{2 \cdot \pi \cdot 5,38}{26,2}\right) = 0,88 m$$

$$\Delta \gamma' = \frac{\pi \cdot H^2}{L} \cdot \coth\left(\frac{2\pi d}{L}\right) = \frac{\pi \cdot 0,40^2}{26,2} \cdot \coth\left(\frac{2 \cdot \pi \cdot 5,38}{26,2}\right) = 0,022 m$$

Slika 3.5 Prikaz statičkog i dinamičkog tlaka na lukobran (plima)

Hidrodinamički tlak:

$$\gamma_{s} = \rho_{s} \cdot g = 1027 \left[\frac{kg}{m^{3}}\right] \cdot 9,81 \left[\frac{m}{s^{2}}\right] = 10074 \left[\frac{N}{m^{3}}\right] = 10,07 \left[\frac{kN}{m^{3}}\right]$$

$$p_{2} = \left(1 - \frac{f_{v}}{h_{w}}\right) \cdot \gamma_{s} \cdot (H + \Delta y) = \left(1 - \frac{2,06}{2,51}\right) \cdot 10,07 \cdot (2,51 + 0,88) = 4,08 \ kN/m^{2}$$

$$p_{0} = \gamma_{s} \frac{H}{ch\left(\frac{2\pi d}{L}\right)} = 10,07 \cdot \frac{2,51}{ch\left(\frac{2 \cdot \pi \cdot 5,38}{26,2}\right)} = 12,93 \ kN/m^{2}$$

$$p'_{0} = \gamma_{s} \frac{H}{ch\left(\frac{2\pi d}{L}\right)} = 10,07 \cdot \frac{0,40}{ch\left(\frac{2 \cdot \pi \cdot 5,38}{26,2}\right)} = 2,06 \ kN/m^{2}$$

Hidrostatički tlak:

 $p_s = d \cdot \gamma_s = 5{,}38 \cdot 10{,}07 = 54{,}18 \ kN/m^2$

Proračun sila P_1 (koju čini suma hidrostatskog tlaka izvana i hidrodinamičkog uslijed brijega stojnog vala) i P_2 (koju čini razlika hidrostatskog tlaka iznutra i hidrodinamičkog tlaka uslijed dola stojnog vala za H' unutar luke):

$$P_{1} = \frac{(p_{s} + p_{0}) \cdot (d + \Delta \gamma + H)}{2} - p_{2} =$$

$$= \frac{(54,18 + 12,93) \cdot (5,38 + 0,88 + 2,51)}{2} - 4,08 =$$

$$= 290,2 \ kN$$

$$P_{2} = \frac{p_{s} \cdot (d + \Delta \gamma')}{2} + \frac{p'_{0} \cdot (d + \Delta \gamma' - H'/2)}{2} =$$

$$= \frac{54,18 \cdot (5,38 + 0,024)}{2} + \frac{2,06 \cdot (5,38 + 0,024 - 0,2)}{2} = 151,75 \ kN$$

Slika 3.6 Prikaz dimenzija lukobrana

Masu lukobrana računamo po m',
specifična težina betona je $\rho_{bet} = 3,02 \ t/m^3$ (M4)

,a kamene ispune $\rho_{kamen} = 2,2 \ t/m^3$, uzevši u obzir koeficijent rastresitosti kamene ispune (1,12) dobivamo da je $\rho_{ispune} = \frac{2,2}{1,12} = 1,96 \ t/m^3$

ELEMENT:

$$P = 1 \cdot 8 - \left(\frac{0.4 \cdot 1.7}{2}\right) + 4 \cdot 0.6 + 5.34 \cdot 1 = 15.4 m^{2}$$

$$M = 15.4 \cdot 3.02 = 46.51 t$$

$$G_{el} = M \cdot g = 46.51 \cdot 9.81 = 456.24 kN$$
PLOČA:
$$P = 0.36 \cdot 4 = 1.44 m^{2}$$

$$M = 1.08 \cdot 3.02 = 4.35 t$$

$$G_{pl} = M \cdot g = 4.35 \cdot 9.81 = 42.67 kN$$
KAMENA ISPUNA:
$$P = 3 \cdot 5.34 = 16.02 m^{2}$$

$$M = 16.02 \cdot 1.96 = 31.4 t$$

$$G_{k} = M \cdot g = 21.46 \cdot 9.81 = 308.03 kN$$

$$G_{uk} = 806.94 kN$$

Sile uzgona:

$$U_{1} = (\gamma_{s}d_{1} - p_{d}) \cdot B = (10,07 \cdot 5,38 - 12,93) \cdot 5 = 206,23 \ kN/m'$$
$$U_{2} = [\gamma_{s}d_{1} - (\gamma_{s}d_{1} - p_{d})] \cdot B \cdot \frac{1}{2} = [54,18 - (41,25)] \cdot 5 \cdot \frac{1}{2} = 32,33 \ kN/m'$$
$$U_{uk} = U_{1} + U_{2} = 206,23 + 32,33 = 238,56 \ kN/m'$$

Provjera stabilnosti na klizanje:

$$K_{K} = \frac{F_{pozH}}{F_{negH}} = \frac{(\sum G - U) \cdot \mu}{|P_{1} - P_{2}|} = \frac{(806,94 - 203,56) \cdot 0,6}{|290,2 - 151,75|} = 2,61 > 1,5 \rightarrow zadovoljava$$

Provjera zida na prevrtanje oko unutrašnje točke dodira blokova s nasipom:

$$\begin{split} K_p &= \frac{\sum M_{poz}}{\sum M_{neg}} = \frac{G_{el} \cdot 2,73 + G_k \cdot 2,5 + G_{pl} \cdot 2 + P_2 \cdot 2,11}{P_1 \cdot 2,93 + U_1 \cdot 2,5 + U_2 \cdot 3,33} = \\ &= \frac{456,24 \cdot 2,73 + 308,03 \cdot 2,5 + 42,67 \cdot 2 + 151,75 \cdot 2,11}{290,2 \cdot 2,93 + 206,23 \cdot 2,5 + 32,33 \cdot 3,33} = 1,64 > 1,5 \rightarrow zadovoljava \end{split}$$

Provjera za nosivost tla ispod temelja na dopušteno naprezanje $\sigma_{dop} = 250 \ kN/m^2$

$$\begin{aligned} \sigma_{1,2} &= \frac{N}{A} \pm \frac{M}{W} \\ b &= 5,0 \rightarrow \text{ $`sirina plohe $za $savijanje} \\ A &= b \cdot 1 = 5,0 \ m^2 \\ W &= b^2 \cdot \frac{1}{6} = 4,17 \rightarrow moment \ otpora \\ N &= G - U_1 - U_2 = 806,94 - 206,23 - 32,33 = 568,38 \ kN/m' \\ M &= P_1 \cdot 2,93 + U_2 \cdot 0,83 + G_{pl} \cdot 0,5 - P_2 \cdot 2,11 - G_{el} \cdot 0,23 = \\ &= 290,2 \cdot 2,93 + 32,33 \cdot 0,83 + 42,67 \cdot 0,5 - 151,75 \cdot 2,11 - 456,24 \cdot 0,23 = \\ &= 473,32 \ kNm/m' \\ \sigma_{1,2} &= \frac{N}{A} \pm \frac{M}{W} = \frac{568,38}{5} \pm \frac{473,32}{4,17} = 113,68 \pm 103,67 \\ \sigma_1 &= 217,35 \ kN/m^2 \rightarrow zadovoljava \\ \sigma_2 &= 10,01 \ kN/m^2 \rightarrow zadovoljava \end{aligned}$$

ANALIZA UDARA VALA NA LUKOBRAN (OSEKA):

Slika 3.7 Prikaz potpunog stojnog vala na lukobran (oseka)

$$d = d_0 - d_{oseka} = 4,5 - 0,3 = 4,2$$

$$\Delta \gamma = \frac{\pi \cdot H^2}{L} \cdot \coth\left(\frac{2\pi d}{L}\right) = \frac{\pi \cdot 2,51^2}{26,2} \cdot \coth\left(\frac{2 \cdot \pi \cdot 4,2}{26,2}\right) = 0,99 m$$

$$\Delta \gamma' = \frac{\pi \cdot H^2}{L} \cdot \coth\left(\frac{2\pi d}{L}\right) = \frac{\pi \cdot 0,40^2}{26,2} \cdot \coth\left(\frac{2 \cdot \pi \cdot 4,2}{26,2}\right) = 0,03 m$$

Slika 3.8 Prikaz statičkog i dinamičkog tlaka na lukobran (oseka)

Hidrodinamički tlak:

$$\gamma_{s} = \rho_{s} \cdot g = 1027 \left[\frac{kg}{m^{3}}\right] \cdot 9,81 \left[\frac{m}{s^{2}}\right] = 10074 \left[\frac{N}{m^{3}}\right] = 10,07 \left[\frac{kN}{m^{3}}\right]$$
$$p_{0} = \gamma_{s} \frac{H}{ch\left(\frac{2\pi d}{L}\right)} = 10,07 \cdot \frac{2,51}{ch\left(\frac{2\cdot\pi\cdot4,2}{26,2}\right)} = 16,29 \ kN/m^{2}$$
$$p_{0}' = \gamma_{s} \frac{H}{ch\left(\frac{2\pi d}{L}\right)} = 10,07 \cdot \frac{0,40}{ch\left(\frac{2\cdot\pi\cdot4,2}{26,2}\right)} = 2,59 \ kN/m^{2}$$

Hidrostatički tlak:

 $p_s = d \cdot \gamma_s = 4,2 \cdot 10,07 = 42,29 \ kN/m^2$

Proračun sila P_1 (koju čini suma hidrostatskog tlaka izvana i hidrodinamičkog uslijed brijega stojnog vala) i P_2 (koju čini razlika hidrostatskog tlaka iznutra i hidrodinamičkog tlaka uslijed dola stojnog vala za H' unutar luke):

$$P_{1} = \frac{(p_{s} + p_{0}) \cdot (d + \Delta \gamma + H)}{2} = \frac{(42,29 + 16,29) \cdot (4,2 + 0,88 + 2,51)}{2} = 222,31 \ kN$$

$$P_{2} = \frac{p_{s} \cdot (d + \Delta \gamma')}{2} + \frac{p'_{0} \cdot (d + \Delta \gamma' - H'/2)}{2} =$$

$$= \frac{42,29 \cdot (4,2 + 0,03)}{2} + \frac{2,59 \cdot (4,2 + 0,03 - 0,2)}{2} = 94,66 \ kN$$

Sile uzgona:

$$U_{1} = (\gamma_{s}d_{1} - p_{d}) \cdot B = (10,07 \cdot 4,2 - 16,29) \cdot 5 = 130,02 \ kN/m'$$
$$U_{2} = [\gamma_{s}d_{1} - (\gamma_{s}d_{1} - p_{d})] \cdot B \cdot \frac{1}{2} = [42,29 - (26,04)] \cdot 5 \cdot \frac{1}{2} = 40,63 \ kN/m'$$
$$U_{uk} = U_{1} + U_{2} = 130,02 + 40,63 = 170,83 \ kN/m'$$

Provjera stabilnosti na klizanje:

$$K_{K} = \frac{F_{pozH}}{F_{negH}} = \frac{(\sum G - U) \cdot \mu}{|P_{1} - P_{2}|} = \frac{(806,94 - 170,83) \cdot 0,6}{|222,31 - 94,66|} = 2,98 > 1,5 \rightarrow zadovoljava$$

Provjera zida na prevrtanje oko unutrašnje točke dodira blokova s nasipom:

$$K_{p} = \frac{\sum M_{poz}}{\sum M_{neg}} = \frac{G_{el} \cdot 2,73 + G_{k} \cdot 2,5 + G_{pl} \cdot 2 + P_{2} \cdot 1,69}{P_{1} \cdot 2,93 + U_{1} \cdot 2,5 + U_{2} \cdot 3,33} =$$

= $\frac{456,24 \cdot 2,73 + 308,03 \cdot 2,5 + 42,67 \cdot 2 + 94,66 \cdot 1,69}{222,31 \cdot 2,53 + 130,02 \cdot 2,5 + 40,63 \cdot 3,33} = 2,21 > 1,5 \rightarrow zadovoljava$

Provjera za nosivost tla ispod temelja na dopušteno naprezanje $\sigma_{dop} = 250 \ kN/m^2$

$$\begin{split} \sigma_{1,2} &= \frac{N}{A} \pm \frac{M}{W} \\ b &= 5,0 \rightarrow \text{ ``sirina plohe za savijanje} \\ A &= b \cdot 1 = 5,0 \ m^2 \\ W &= b^2 \cdot \frac{1}{6} = 4,17 \rightarrow \text{moment otpora} \\ N &= G - U_1 - U_2 = 806,94 - 130,02 - 40,63 = 636,29 \ kN/m' \\ M &= P_1 \cdot 2,93 + U_2 \cdot 0,83 + G_{pl} \cdot 0,5 - P_2 \cdot 2,11 - G_{el} \cdot 0,23 = \\ &= 222,31 \cdot 2,93 + 40,63 \cdot 0,83 + 42,67 \cdot 0,5 - 94,66 \cdot 2,11 - 456,24 \cdot 0,23 = \\ &= 391,09 \ kNm/m' \\ \sigma_{1,2} &= \frac{N}{A} \pm \frac{M}{W} = \frac{636,29}{5} \pm \frac{391,09}{4,17} = 127,26 \pm 93,79 \\ \sigma_1 &= 221,05 \ kN/m^2 \rightarrow zadovoljava \\ \sigma_2 &= 33,47 \ kN/m^2 \rightarrow zadovoljava \end{split}$$

ANALIZA DJELOVANJA VALA NA NASIP:

Preporučeni	reporučeni koeficijent stabilnosti K _D							
Dimenzionir	anje pokro	anje pokrovnog sloja nasutok lukobrana po HUDSON-u (no damage kriterij)						
Vrsta			Bok va	obrana	Glava va	Glava valobrana		
elementa pokrovnog sloja	Broj slojeva	Način smještaja	Lomljeni valovi	Valovi koji se ne lome	Lomljeni valovi	Valovi koji se ne lome	nagib	
Glatki	2	slučajno	1,2	2,4	1,1	1,9	1:1,5 1:3	
zaobljeni	>3	slučajno	1,6	3,2	1,4	2,3	1:1,5 1:3	
	2	slučajno	2,0	4,0	1,9	3,2	1:1,5	
					1,6	2,8	1:2	
Oštrobridi					1,3	2,3	1:3	
lomljeni	>3	slučajno	2,2	4,5	2,1	4,2	1:1,5 1:3	
kamen	2	specialno položeni	5,8	5,3	7,0	6,4	1:1,5 1:3	
.	2	slučajno	7,0	8,0	5,0	6,0	1:1,5	
Tetrapodi					4,0	5,5	1:2	
Quadripodi					3,5	4,0	1:3	
Tribari	2	slučajno	9,0	10,0	8,3	9,0	1:1,5	
					7,8	8,5	1:2	
					6,0	6,5	1:3	
Deleci	2	slučajno	15,8	31,8	8,0	16,0	1:2	
Dolosi					7,0	14,0	1:3	

 $d + \textit{NVV} < 2{,}5\textit{H} \rightarrow 5{,}38 < 6{,}28 \rightarrow plitkovodni dvoslojni nasip$

Slika 3.9 Koeficijent stabilnosti za odabrani tip školjere

Minimalna težina elementa školjere:

$$W = \frac{\rho_{kamen} \cdot g \cdot H^3}{K_d \cdot \left(\frac{\rho_k}{\rho_w} - 1\right)^3} \cdot tg\alpha = \frac{2650 \cdot 9,81 \cdot 2,51^3}{4 \cdot \left(\frac{2650}{1027} - 1\right)^3} \cdot 0,62 = 16144,46 N = 1645,71 kg$$

SLOJ	TEŽINA ELEMENATA PO STANDARDU	IZRAČUNATE VELIČINE (N)	MASA ELEMENTA (kg)
А	W	16144.42	1645.71
В	W/10	1614.43	164.57
С	W/200-W/4000 (odabrano W/500)	32.27	3.29

Slika 3.10 Težine	blo	kova	pojedini	h sl	ojeva
-------------------	-----	------	----------	------	-------

Minimalna debljina slojeva:

$$t_{s} = n \cdot \sqrt[3]{W/(\rho_{k} \cdot g)}$$

n=3 za krunu; 2 za ostale
$$SLOJ \to A \to t_{s} = 3 \cdot \sqrt[3]{16144,42/(2650 \cdot 9,81)} = 1,7 m$$
$$SLOJ \to B \to t_{s} = 3 \cdot \sqrt[3]{1614,43/(2650 \cdot 9,81)} = 0,79 m$$
$$SLOJ \to C \to t_{s} = 3 \cdot \sqrt[3]{32,27/(2650 \cdot 9,81)} = 0,22 m$$

Visina uspinjanja vala određuje se pomoću dijagrama, kojim je zadana ovisnost H_0/gT^2 i R/H_0 :

$$H_s = 2,51$$
$$\frac{H_s}{gT^2} = \frac{2,51}{9,81 \cdot 4,6^2} = 0,012$$

Nagib obale:

1:1,5 (hrapava i propusna obala)

$$\frac{R}{H_s} = 0,75$$

$$R = 0,75 \cdot 2,51 = 1,88 m$$

$$r \sim 0,25 \cdot H_s = 0,63 m$$
Visina lukobrana:

$$H_{lukobrana} = (4,5 + 0,19 + 0,88) + 1,88 + 0,63 = 8,08 m$$

Kruna nasipa se nalazi na koti 3,58 m

ANALIZA SILA VEZA NA LUKOBRAN:

Radimo proračun za brodove VI. Kategorije unutar luke po najjačem izmjerenom vjetru Bf 8

$$\begin{aligned} \alpha &= 0^{\circ} \\ \text{Uzeti koeficijent oblika } C &= 1,1 \\ v_{nadvodje} &= 74 \, km/h = 20,6 \, m/s \, (Bf = 8) \\ A &= L_{broda} \cdot h_{broda} = 13 \cdot 2 = 26 \, m^2 \\ F &= C \cdot A \cdot \frac{\rho \cdot v_{y}^2}{2} = 1 \cdot 26 \cdot \frac{1,29 \cdot 20,6^2}{2} = 7828,17 \, \text{N} \approx 7,9 \, \text{kN} \\ d_{F^H} &= 5,38 + 1,3 = 6,68 \, m \\ d_{F^V} &= 1,6 \, m \\ F_{1/2} &= \frac{7,9}{2} = 3,95 \, kN = F_{vez} \\ F_{vez}^H &= F_{vez} = 3,95 \, kN \\ M_{vez}^H &= F_{vez} \cdot 6,68 = 26,39 \, kNm/m' \\ M_{vez}^H &= \frac{\Sigma M_{poz}}{\Sigma M_{neg}} = \frac{G_{el} \cdot 2,73 + G_k \cdot 2,5 + G_{pl} \cdot 2 + P_2 \cdot 2,11}{P_1 \cdot 2,93 + U_1 \cdot 2,5 + U_2 \cdot 3,33 + F_{vez} \cdot 6,68} = 2,15 > 1,5 \rightarrow zadovoljava \end{aligned}$$

Neće doći do prevrtanja oko untarnje donje točke blokova s nasipom.

4. ZAKLJUČAK

Projektirana luka se nalazi u sjeverozapadnom dijelu Kaštelanskog zaljeva, najveći vjetrom generirani valovi dolaze iz smjera JZ zbog najvećih privjetrišta 25-35 km.

Zbog svoje loše izvedbe Južni dio lukobrana je uklonjen i zamijenjen AB kesonskim elementima, novi lukobran ima dužinu od 90 metara. Istočni lukobran je izgrađen mješovitom izvedbom, odnosno spoja nasipa i zidne konstrukcije. Rekonstruiranjem lučice smo dobili 10 dodatnih vezova, za brodove VI. i IV. kategorije uz mogućnost naknadne izvedbe plutajućih pontona te dobivanja još 40-ak vezova za brodice III. kategorije. U lučici se nalaze 4 veza VI. kategorije i 6 vezova za brodice IV. kategorije koji služe kao vez za motorne brodice, i jedrilice, svi ostali vezovi su isključivo za brodice na motorni pogon zbog svoje male dubine. Lučica premašuje uvjete domicilnog stanovništva te udovoljava standardima svojih korisnika kako tehnički tako i estetski.

5. LITERATURA

V. Srzić;

PREDAVANJA I VJEŽBE, POMORSKE GRAĐEVINE

M. Pršić;

PLOVNI PUTOVI I LUKE (DIO 6.8 LUKOBRANI)

J. William Kamphuis;

INTRODUCTION TO COASTAL ENGINEERING AND MANAGEMENT

LUČICA RESNI	AL STED
VRSTA PROJEKTA: ZAVRŠNI RAD	CO D
RAZINA PROJEKTA: IDEJNO RJEŠE!	DE LA S DI
SADRŽAJ: TLOC	RT LUČICE
PROJEKTANT: VEDRAN BOROZAN	BROJ NACRTA:
MIERILO: 1:1000	RUJAN,2021

Ch m

GRADEVINA:

PRESJEK A-A

